高中物理知识点总结归纳 第1篇

1.简谐振动要牢记,o为起点算位移,回复力的方向指,始终向平衡位置,

大小正比于位移,平衡位置u大极。

点对称别忘记,振动强弱是振幅,振动快慢是周期,一周期走4a路,单摆xxx比g,再开方根乘2p,秒摆周期为2秒,摆长约等长1米。

到质心摆长行,单摆具有等时性。

3.振动图像描方向,从底往顶是向上,从顶往底是下向;振动图像描位移,顶点底点大位移,正负符号方向指。

高中物理知识点总结归纳 第2篇

1、物质的原子结构:物质是由分子,原子组成,原子由带正电的原子核以及环绕原子核运动的带负电的电子组成的。而原子核又是由质子和中子组成的。质子带正电、中子不带电。在一般情况下,物体内部的原子中电子的数目等于质子的数目,整个物体不带电,呈电中性。

2、电荷守恒定律:任何孤立系统的电荷总数保持不变。在一个系统的内部,电荷可以从一个物体传到另一个物体。但是,在这个过程中系统的总的电荷时不改变的。

3、用物质的原子结构和电荷守恒定律分析静电现象

(1)分析摩擦起电

(2)分析接触起电

(3)分析感应起电

4、物体带电的本质:电荷发生转移的过程,电荷并没有产生或消失。

例题分析:

1、下列说法正确的是( A )

A.摩擦起电和静电感应都是使物体的正负电荷分开,而总电荷量并未变化

B.用毛皮摩擦过的硬橡胶棒带负电,是摩擦过程中硬橡胶棒上的正电荷转移到了毛皮上

C.用丝绸摩擦过的玻璃棒带正电荷是摩擦过程中玻璃棒得到了正电荷

D.物体不带电,表明物体中没有电荷

2、如图8-5所示,把一个不带电的枕型导体靠近带正电的小球,由于静电感应,在a,b端分别出现负、正电荷,则以下说法正确的是:( C )

A.闭合K1,有电子从枕型导体流向地

B.闭合K2,有电子从枕型导体流向地

C.闭合K1,有电子从地流向枕型导体

D.闭合K2,没有电子通过K2

1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

2.欧姆定律:I=_{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

3.电阻、电阻定律:R=ρL/S{ρ:电阻(Ω/m),L:导体的长度(m),S:导体横截面积(m2)}

4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

7.纯电阻电路中:由于I=_,W=Q,因三此W=Q=UIt=I2Rt=U2t/R

8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)

电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+

电流关系I总=I1=I2=I3I并=I1+I2+I3+

电压关系U总=U1+U2+U3+U总=U1=U2=U3

功率分配P总=P1+P2+P3+P总=P1+P2+P3

10.欧姆表测电阻

(1)电路组成

(2)测量原理

两表笔短接后,调节Ro使电表指针满偏,得Ig=E/(r+Rg+Ro)接入被测电阻Rx后通过电表的电流为Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)由于Ix与Rx对应,因此可指示被测电阻大小

(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

11.伏安法测电阻

电流表内接法:电压表示数:U=UR+UA

电流表外接法:电流表示数:I=IR+IV

Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真;

Rx的测量值=U/I=UR/(IR+IV)=RVRx(RV+R)

选用电路条件Rx>RA[或Rx>(RARV)1/2]

选用电路条件Rx

12.滑动变阻器在电路中的限流接法与分压接法限流接法:电压调节范围小,电路简单,功耗小便于调节电压的选择条件Rp>Rx电压调节范围大,电路复杂,功耗较大便于调节电压的选择条件Rp。

(1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω

(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;

(3)串_电阻大于任何一个分电阻,并_电阻小于任何一个分电阻;

(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;

(5)当外电路电阻等于电源电阻时,电源输出功率,此时的输出功率为E2/(2r);

(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用。

电场力做正功,电势能减小,电场力做负功,电势能增大,正电荷在电场中受力方向与场强方向一致,所以正电荷沿场强方向,电势能减小,负电荷在电场中受力方向与场强相反,所以负电荷沿场强方向,电势能增大,但电势都是沿场强方向减小。

1、原因

电势能,电场力,功的关系与重力势能,重力,功的关系很相似。

E=mgh,重力做正功,重力势能减小。

电势能的原因就是电场力有做功的能力,凡是势能规律几乎都是如此,电场力正做功,电势能减小,电场力负做功,电势能增大,在做正功的过程中,电势能通过做功的形式把能量转化为其他形式的能,因而电势能减小。

静电力做的正功功=电势能的减小量,静电力做的负功=电势能的增加量

2、判断电场力做功的方法

(1)看电场力与带电粒子的位移方向夹角,小于90度为正功,大于90度为负功;

(2)看电场力与带电粒子的速度方向夹角,小于90度为正功,大于90度为负功;

(3)看电势能的变化,电势能增加,电场力做负功,电势能减小,电场力做正功。

磁感应强度(magneticfluxdensity),描述磁场强弱和方向的物理量,是矢量,常用符号B表示,国际通用单位为特斯拉(符号为T)。磁感应强度也被称为磁通量密度或磁通密度。在物理学中磁场的强弱使用磁感应强度来表示,磁感应强度越大表示磁感应越强;磁感应强度越小,表示磁感应越弱。

磁感应强度的定义公式

磁感应强度公式B=F/(IL)

磁感应强度是由什么决定的?磁感应强度的大小并不是由F、I、L来决定的,而是由磁极产生体本身的属性。

如果是一块磁铁,那么B的大小之和这块磁铁的大小和磁性强弱有关。

如果是电磁铁,那么B与I、匝数及有无铁芯有关。

高中物理知识点总结归纳 第3篇

1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}

2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}

3.受迫振动频率特点:f=f驱动力

4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用

5.机械波、xxx、xxx

高中物理知识点总结归纳 第4篇

一、xxx韦电磁场理论

1、电磁场理论的核心之一:变化的磁场产生电场

在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)

◎理解:

(1)均匀变化的磁场产生稳定电场

(2)非均匀变化的磁场产生变化电场

2、电磁场理论的核心之二:变化的电场产生磁场

xxx韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场

◎理解:

(1)均匀变化的电场产生稳定磁场

(2)非均匀变化的电场产生变化磁场〖规律总结〗

1、xxx韦电磁场理论的理解:恒定的电场不产生磁场恒定的磁场不产生电场

均匀变化的电场在周围空间产生恒定的磁场均匀变化的磁场在周围空间产生恒定的电场振荡电场产生同频率的振荡磁场振荡磁场产生同频率的振荡电场

2、电场和磁场的变化关系。

二、电磁波

1、电磁场:如果在空间某区域中有周期性变化的电场,那么这个变化的电场就在它周围空间产生周期性变化的磁场;这个变化的磁场又在它周围空间产生新的周期性变化的电场,变化的电场和变化的磁场是相互联系着的,形成不可分割的统一体,这就是电磁场这个过程可以用下图表达。2、电磁波:电磁场由发生区域向远处的传播就是电磁波。

3、电磁波的特点:

(1)电磁波是xxx,电场强度E和磁感应强度B按正弦规律变化,二者相互垂直,均xxx的传播方向垂直

(2)电磁波可以在真空中传播,速度和光速相同。v=λf

(3)电磁波xxx的特性

三、赫兹的电火花

赫兹观察到了电磁波的反射,折射,干涉,偏振和衍射等现象。,他还测量出电磁波和光有相同的速度。这样赫兹证实了xxx韦关于光的电磁理论,赫兹在人类历史上首先捕捉到了电磁波。

高中物理知识点总结归纳 第5篇

平抛运动

1.水平方向速度:Vx=Vo

2.竖直方向速度:Vy=gt

3.水平方向位移:x=Vot

4.竖直方向位移:y=gt2/2

5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

7.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo

8.水平方向加速度:ax=0;竖直方向加速度:ay=g

匀速圆周运动

1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf

3.xxx加速度a=V2/r=ω2r=(2π/T)2r 4.xxx力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8.主要物理量及单位:弧长(s):(m);角度(Φ):弧度(rad);频率(f);赫(Hz);周期(T):秒(s);转速(n);r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;xxx加速度:m/s2。

万有引力

1.xxx第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

2.万有引力定律:F=Gm1m2/r2 (G=×10-11N?m2/kg2,方向在它们的连线上)

3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=;V2=;V3=

6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

高中物理知识点总结归纳 第6篇

1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。

2.分析受力要仔细,定量计算七种力;重力有无看

提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。

3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹,平行四边形定法;合力大小随q变,只在最大最小间,多力合力合另边。

多力问题状态揭,正交分解来解决,三角函数能化解。

4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体xxx也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。

高中物理知识点总结归纳 第7篇

高中物理知识点总结

电场力做正功,电势能减小,电场力做负功,电势能增大,正电荷在电场中受力方向与场强方向一致,所以正电荷沿场强方向,电势能减小,负电荷在电场中受力方向与场强相反,所以负电荷沿场强方向,电势能增大,但电势都是沿场强方向减小。

1、原因

电势能,电场力,功的关系与重力势能,重力,功的关系很相似。

E=mgh,重力做正功,重力势能减小。

电势能的原因就是电场力有做功的能力,凡是势能规律几乎都是如此,电场力正做功,电势能减小,电场力负做功,电势能增大,在做正功的过程中,电势能通过做功的形式把能量转化为其他形式的能,因而电势能减小。

静电力做的正功功=电势能的减小量,静电力做的负功=电势能的增加量

2、判断电场力做功的方法

(1)看电场力与带电粒子的位移方向夹角,小于90度为正功,大于90度为负功;

(2)看电场力与带电粒子的速度方向夹角,小于90度为正功,大于90度为负功;

(3)看电势能的变化,电势能增加,电场力做负功,电势能减小,电场力做正功。

怎么学习高中物理

1.端正学习态度

首先分析一下上面同学们提出的普遍问题,即为什么上课听得懂,而课下不会做?我作为学理科的教师有这样的切身感受:比如读某一篇文学作品,文章中对自然景色的描写,对人物心里活动的描写,都写得令人叫绝,而自己也知道是如此,但若让自己提起笔来写,未必或者说就不能写出人家的水平。

要想学好物理,第一条就要好好学习,就是要敢于吃苦,就是要珍惜时间,就是要不屈不挠地去学习。

2.把“陌生”变成“透彻”!

遇到陌生的概念,比如“势能”“电势”“电势差”等等先不要排斥,要先去真心接纳它,再通过听老师讲解、对比、应用理解它。要有一种“不破楼兰誓不还”的决心和“打破沙锅问到底”的研究精神。这样时间长了,应用多了,陌生的就变成了透彻的了。

3.要注意学习上的八个环节

制定计划→课前预习→专心上课→及时复习→独立作业→解决疑难→系统总结→课外学习。这里最重要的是:专心上课→及时复习→独立作业→解决疑难→系统总结,这五个环节。在以上八个环节中,存在着不少的学习方法,下面就针对物理的特点,针对就如何学好物理,这一问题提出几点具体的学习方法。

4.处理好听课和记笔记的关系

有的同学从来就没有记笔记的习惯,这是不好的,特别是对于高中物理学习中是不行的。俗话说“好脑子不如烂笔头”,听课时间有限,老师讲的内容转瞬即逝,我们对知识的记忆随时间延伸会逐渐遗忘,没有笔记我们以后就没有办法进行复习。

高中物理复习技巧

1.模型归类

做过一定量的物理题目之后,会发现很多题目其实思考方法是一样的,我们需要按物理模型进行分类,用一套方法解一类题目。例如宏观的行星运动和微观的电荷在磁场中的偏转都属于匀速圆周运动,关键都是找出什么力提供了xxx力;此外还有杠杆类的题目,要想象出力矩平衡的特殊情况,还有关于汽车启动问题的考虑方法其实同样适用于起重机吊重物等等。物理不需要做很多题目,能够判断出物理模型,将方法对号入座,就已经成功了一半。

2.解题规范

高考越来越重视解题规范,体现在物理学科中就是文字说明。解一道题不是列出公式,得出答案就可以的,必须标明步骤,说明用的是什么定理,为什么能用这个定理,有时还需要说明物体在特殊时刻的特殊状态。这样既让老师一目了然,又有利于理清自己的思路,还方便检查,最重要的是能帮助我们在分步骤评分的评分标准中少丢几分。

3.大胆猜想

物理题目常常是假想出的理想情况,几乎都可以用我们学过的知识来解释,所以当看到一道题目的背景很陌生时,就像今年高考物理的压轴题,不要慌了手脚。在最后的20分钟左右的时间里要保持沉着冷静,根据给出的物理量和物理关系,把有关的公式都列出来,大胆地猜想磁场的势能与重力场的势能是怎样复合的,取最值的情况是怎样的,充分利用图像提供的变化规律和数据,在没有完全理解题目的情况下多得几分是完全有可能的。

高中物理知识点总结归纳 第8篇

1、1827年英国植物学家xxx:发现悬浮在水中的花粉微粒不停地做无规则运动的现象——xxx运动。

2、1661年英国物理学家玻意耳发现:一定质量的气体在温度不变时,它的压强与体积成反比,即为玻意耳定律。

3、1787年法国物理学家xxx发现:一定质量的气体在体积不变时,它的压强与热力学温度成正比,即为xxx定律。

4、1802年法国物理学家盖·xxx发现:一定质量的气体在压强不变时,它的体积与热力学温度成正比,即为盖·xxx定律。

高中物理知识点总结归纳 第9篇

2.功率P:功率是表征力做功快慢的物理量、是标量:P=W/t。若做功快慢程度不同,上式为平均功率。

注意恒力的功率不一定恒定,如初速为零的匀加速运动,第一秒、第二秒、第三秒……内合力的平均功率之比为1:3:5……。

约束条件:1)发动机功率一定:牵引力与速度成反比,只要速度改变,牵引力F=P/v将改变,这时的运动一定是变加速运动。2)机车以恒力启动:牵引力F恒定,由P=Fv可知,若车做匀加速运动,则功率P将增加,这种过程直到P达到机车的额定功率为止(注意不是达到最大速度为止)。

3.能:自然界有多种运动形式,与不同运动形式相应的存在不同形式的能量:

机械运动--机械能;

热运动--内能;

电磁运动--电磁能;

化学运动--化学能;

生物运动--生物能;

原子及原子核运动--原子能、核能……。

动能:物体由于有机械运动速度而具有的能量Ek=mv2/2能,包括动能和势能,都是标量。

4.动能定理

研究对象:质点,数学表达公式:W=mv2/2-mv02/2。公式中W为质点受到的所有的作用力在所研究的过程中做的总功,它可以是恒力功,可以是变力功,可以是分阶段由不同的力做功累积(代数和)而得到的结果。

力对物体所做的总功量度了物体动能的变化大小

5.机械能守恒定律:在只有重力或弹力做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变。

注:(1)根据守恒条件:是否只有重力或弹力做功

(2)考察状态:比较、确定不同状态的机械能,看它们是否相同(3)考察系统是否发生机械能与其它形式的能量的转化

6.功和能:功是能量转化的量度。

7.关于速度、动量、动能:速度动量动能均为描述质点运动状态的物理量,速度反映质点运动快慢和方向,是运动学量.运动速度不能描述物体所含机械运动的强弱,

8.比较力学三个核心定律xxx定律∑F=ma(矢量式、瞬时式)动量定理∑Ft=mv-mv0(矢量式、过程式)动能定理∑W=mv2/2-mv02/2(标量式、过程式)这是研究质点运动的三条核心规律,它们的意义分别为:力是改变质点运动状态的原因;力在时间上的累积作用--∑Ft量度质点动量的变化;力在空间上的累积作用--W量度质点动能的变化。

高中物理知识点总结归纳 第10篇

1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。

感应电动势大小,磁通变化率知晓。

2.楞次定律定方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。

3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。楞次先看原磁场,感生磁场将xxx,全看磁通增或减,安培定则知i向。

必修和选修物理知识点汇总

高中物理知识点总结归纳 第11篇

最新高中物理知识点总结

运动的描述

1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢S比t ,a用Δv与t 比。

2. 运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等a T平方。

3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。

1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。

2.分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。

3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹 ,平行四边形定法;合力大小随q变 ,只在最大最小间,多力合力合另边。

多力问题状态揭,正交分解来解决,三角函数能化解。

4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体xxx也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。

xxx运动定律

等ma,xxx二定律,产生加速度,原因就是力。

合力与a同方向,速度变量定a向,a变小则u可大 ,只要a与u同向。

、T等力是视重,mg乘积是实重; 超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零。

曲线运动、万有引力

1.运动轨迹为曲线,xxx力存在是条件,曲线运动速度变,方向就是该点切线。

2.圆周运动xxx力,供需关系在心里,径向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心离。

3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。

机械能与能量

1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。

2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。

3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。

电场 〖选修3--1〗

1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。

2.电荷周围有电场,F比q定义场强。KQ比r2点电荷,U比d是匀强电场。

电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。

3.场能性质是电势,场线方向电势降。 场力做功是qU ,动能定理不能忘。

4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。

恒定电流〖选修3-1〗

1.电荷定向移动时,电流等于q比 t。自由电荷是内因,两端电压是条件。

正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。

2.电阻定律三因素,温度不变才得出,控制变量来论述,r l比s 等电阻。

电流做功U I t , 电热I平方R t 。电功率,W比t,电压乘电流也是。

3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。

4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。

路端电压内压降,和就等电动势,除于总阻电流是。

磁场〖选修3-1〗

1.磁体周围有磁场,N极受力定方向;电流周围有磁场,安培定则定方向。

比I l是场强,φ等B S 磁通量,磁通密度φ比S,磁场强度之名异。

安培力,相互垂直要注意。

4.洛仑兹力安培力,力往左甩别忘记。

电磁感应〖选修3-2〗

1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。感应电动势大小,磁通变化率知晓。

2.楞次定律定方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。

3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。楞次先看原磁场,感生磁场将xxx,全看磁通增或减,安培定则知i 向。

交流电〖选修3-2〗

1.匀强磁场有线圈,旋转产生交流电。电流电压电动势,变化规律是弦线。

中性面计时是正弦,平行面计时是余弦。

ω是最大值,有效值用热量来计算。

3.变压器供交流用,恒定电流不能用。

理想变压器,初级U I值,次级U I值,相等是原理。

电压之比值,正比匝数比;电流之比值,反比匝数比。

运用变压比,若求某匝数,化为匝伏比,方便地算出。

远距输电用,升压降流送,否则耗损大,用户后降压。

气态方程〖选修3-3〗

研究气体定质量,确定状态找参量。绝对温度用大T,体积就是容积量。

压强分析封闭物,xxx定律帮你忙。状态参量要找准,PV比T是恒量。

热力学定律

1.第一定律热力学,能量守恒好感觉。内能变化等多少,热量做功不能少。

正负符号要准确,收入支出来理解。对内做功和吸热,内能增加皆正值;对外做功和放热,内能减少皆负值。

2.热力学第二定律,热传递是不可逆,功转热和热转功,具有方向性不逆。

机械振动〖选修3--4〗

1.简谐振动要牢记,O为起点算位移,回复力的方向指,始终向平衡位置,大小正比于位移,平衡位置u大极。

点对称别忘记,振动强弱是振幅,振动快慢是周期,一周期走4A路,单摆xxx比g,再开方根乘2p,秒摆周期为2秒,摆长约等长1米。

到质心摆长行,单摆具有等时性。

3.振动图像描方向,从底往顶是向上,从顶往底是下向;振动图像描位移,顶点底点大位移,正负符号方向指。

高中物理易错点大汇总

1.大的物体不一定不能看成质点,小的物体不一定能看成质点。

2.平动的物体不一定能看成质点,转动的物体不一定不能看成质点。

3.参考系不一定是不动的,只是假定为不动的物体。

4.选择不同的参考系物体运动情况可能不同,但也可能相同。

5.在时间轴上n秒时指的是n秒末。第n秒指的是一段时间,是第n个1秒。第n秒末和第n+1秒初是同一时刻。

6.忽视位移的矢量性,只强调大小而忽视方向。

7.物体做直线运动时,位移的大小不一定等于路程。

8.位移也具有相对性,必须选一个参考系,选不同的参考系时,物体的位移可能不同。

9.打点计时器在纸带上应打出轻重合适的小圆点,如遇到打出的是短横线,应调整一下振针距复写纸的高度,使之增大一点。

10.使用计时器打点时,应先接通电源,待打点计时器稳定后,再释放纸带。

11.释放物体前,应使物体停在靠近打点计时器的位置。

12.使用电火花打点计时器时,应注意把两条白纸带正确穿好,墨粉纸盘夹在两纸带间;使用电磁打点计时器时,应让纸带通过限位孔,压在复写纸下面。

13.“速度”一词是比较含糊的统称,在不同的语境中含义不同,一般指瞬时速率、平均速度、瞬时速度、平均速率四个概念中的一个,要学会根据上、下文辨明“速度”的含义。平常所说的“速度”多指瞬时速度,列式计算时常用的是平均速度和平均速率。

14.着重理解速度的矢量性。有的同学受初中所理解的速度概念的影响,很难接受速度的方向,其实速度的方向就是物体运动的方向,而初中所学的“速度”就是现在所学的平均速率。

(二)

15.平均速度不是速度的平均。

16.平均速率不是平均速度的大小。

17.物体的速度大,其加速度不一定大。

18.物体的速度为零时,其加速度不一定为零。

19.物体的速度变化大,其加速度不一定大。

20.加速度的正、负仅表示方向,不表示大小。

21.物体的加速度为负值,物体不一定做减速运动。

22.物体的加速度减小时,速度可能增大;加速度增大时,速度可能减小。

23.物体的速度大小不变时,加速度不一定为零。

24.物体的加速度方向不一定与速度方向相同,也不一定在同一直线上。

25.位移图象不是物体的运动轨迹。

26.解题前先搞清两坐标轴各代表什么物理量,不要把位移图象与速度图象混淆。

27.图象是曲线的不表示物体做曲线运动。

28.由图象读取某个物理量时,应搞清这个量的大小和方向,特别要注意方向。

(三)

图上两图线相交的点,不是相遇点,只是在这一时刻相等。

30.人们得出“重的物体下落快”的错误结论主要是由于空气阻力的影响。

31.严格地讲自由落体运动的物体只受重力作用,在空气阻力影响较小时,可忽略空气阻力的影响,近似视为自由落体运动。

32.自由落体实验实验记录自由落体轨迹时,对重物的要求是“质量大、体积小”,只强调“质量大”或“体积小”都是不确切的。

33.自由落体运动中,加速度g是已知的,但有时题目中不点明这一点,我们解题时要充分利用这一隐含条件。

34.自由落体运动是无空气阻力的理想情况,实际物体的运动有时受空气阻力的影响过大,这时就不能忽略空气阻力了,如雨滴下落的最后阶段,阻力很大,不能视为自由落体运动。

35.自由落体加速度通常可取或10m/s2,但并不是不变的,它随纬度和海拔高度的变化而变化。

36.四个重要比例式都是从自由落体运动开始时,即初速度v0=0是成立条件,如果v0≠0则这四个比例式不成立。

37.匀变速运动的各公式都是矢量式,列方程解题时要注意各物理量的方向。

38.常取初速度v0的方向为正方向,但这并不是一定的,也可取与v0相反的方向为正方向。

39.汽车刹车问题应先判断汽车何时停止运动,不要盲目套用匀减速直线运动公式求解。

40.找准追及问题的临界条件,如位移关系、速度相等等。

41.用速度图象解题时要注意图线相交的点是速度相等的点而不是相遇处。

42.产生弹力的条件之一是两物体相互接触,但相互接触的物体间不一定存在弹力。

(四)

43.某个物体受到弹力作用,不是由于这个物体的形变产生的,而是由于施加这个弹力的物体的形变产生的。

44.压力或支持力的方向总是垂直于接触面,与物体的重心位置无关。

45.xxx定律公式F=kx中的x是弹簧伸长或缩短的长度,不是弹簧的总长度,更不是弹簧原长。

46.弹簧弹力的大小等于它一端受力的大小,而不是两端受力之和,更不是两端受力之差。

47.杆的弹力方向不一定沿杆。

48.摩擦力的作用效果既可充当阻力,也可充当动力。

49.滑动摩擦力只以μ和N有关,与接触面的大小和物体的运动状态无关。

50.各种摩擦力的方向与物体的运动方向无关。

51.静摩擦力具有大小和方向的可变性,在分析有关静摩擦力的问题时容易出错。

52.最xxx摩擦力与接触面和正压力有关,静摩擦力与压力无关。

53.画力的图示时要选择合适的标度。

54.实验中的两个细绳套不要太短。

55.检查弹簧测力计指针是否指零。

56.在同一次实验中,使橡皮条伸长时结点的位置一定要相同。

(五)

57.使用弹簧测力计拉细绳套时,要使弹簧测力计的弹簧与细绳套在同一直线上,弹簧与木板面平行,避免弹簧与弹簧测力计外壳、弹簧测力计限位卡之间有摩擦。

58.在同一次实验中,画力的图示时选定的标度要相同,并且要恰当使用标度,使力的图示稍大一些。

59.合力不一定大于分力,分力不一定小于合力。

60.三个力的合力最大值是三个力的数值之和,最小值不一定是三个力的数值之差,要先判断能否为零。

61.两个力合成一个力的结果是惟一的,一个力分解为两个力的情况不惟一,可以有多种分解方式。

62一个力分解成的两个分力,与原来的这个力一定是同性质的,一定是同一个受力物体,如一个物体放在斜面上静止,其重力可分解为使物体下滑的力和使物体压紧斜面的力,不能说成下滑力和物体对斜面的压力。

63.物体在粗糙斜面上向前运动,并不一定受到向前的力,认为物体向前运动会存在一种向前的“冲力”的说法是错误的。

64.所有认为惯性与运动状态有关的想法都是错误的,因为惯性只与物体质量有关。

65.惯性是物体的一种基本属性,不是一种力,物体所受的外力不能克服惯性。

66.物体受力为零时速度不一定为零,速度为零时受力不一定为零。

67.xxx第二定律F=ma中的F通常指物体所受的合外力,对应的加速度a就是合加速度,也就是各个独自产生的加速度的矢量和,当只研究某个力产生加速度时xxx第二定律仍成立。

68.力与加速度的对应关系,无先后之分,力改变的同时加速度相应改变。

69.虽然由xxx第二定律可以得出,当物体不受外力或所受合外力为零时,物体将做匀速直线运动或静止,但不能说xxx第一定律是xxx第二定律的特例,因为xxx第一定律所揭示的物体具有保持原来运动状态的性质,即惯性,在xxx第二定律中没有体现。

70.xxx第二定律在力学中的应用广泛,但也不是“放之四海而皆准”,也有局限性,对于微观的高速运动的物体不适用,只适用于低速运动的宏观物体。

(六)

71.用xxx第二定律解决动力学的两类基本问题,关键在于正确地求出加速度a,计算合外力时要进行正确的受力分析,不要漏力或添力。

72.用正交分解法列方程时注意合力与分力不能重复计算。

73.注意F合=ma是矢量式,在应用时,要选择正方向,一般我们选择合外力的方向即加速度的方向为正方向。

74.超重并不是重力增加了,失重也不是失去了重力,超重、失重只是视重的变化,物体的实重没有改变。

75.判断超重、失重时不是看速度方向如何,而是看加速度方向向上还是向下。

76.有时加速度方向不在竖直方向上,但只要在竖直方向上有分量,物体也处于超、失重状态。

77.两个相关联的物体,其中一个处于超(失)重状态,整体对支持面的压力也会比重力大(小)。

78.国际单位制是单位制的一种,不要把单位制理解成国际单位制。

79.力的单位xxx不是基本单位而是导出单位。

80.有些单位是常用单位而不是国际单位制单位,如:小时、斤等。

81.进行物理计算时常需要统一单位。

82.只要存在与速度方向不在同一直线上的合外力,物体就做曲线运动,与所受力是否为恒力无关。

83.做曲线运动的物体速度方向沿该点所在的轨迹的切线,而不是合外力沿轨迹的切线。请注意区别。

84.合运动是指物体相对地面的实际运动,不一定是人感觉到的运动。

高中物理知识点总结归纳 第12篇

1.气体的状态参量:

温度:宏观上,物体的冷热程度 高一;微观上,物体内部分子无规则运动的剧烈程度的标志,

热力学温度与xxx温度关系:T=t+273 {T:热力学温度(K),t:xxx温度(℃)}

体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL

压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=×105Pa=76cmHg(1Pa=1N/m2)

2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}

(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为xxx温度(℃),而T为热力学温度(K)。

高中物理知识点总结归纳 第13篇

1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}

2.重力做功:Wab=mghab {m:物体的质量,g=≈10m/s2,hab:a与b高度差(hab=ha-hb)}

3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}

4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}

5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}

6.汽车牵引力的功率:P=Fv;xxx=Fv平 {P:瞬时功率,xxx:平均功率}

7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)

8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}

9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}

10.纯电阻电路中I=_;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}

13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}

14.动能定理(对物体做正功,物体的动能增加):

W合=mvt2/2-mvo2/2或W合=ΔEK

{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}

15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP

高中物理知识点总结归纳 第14篇

1.两种电荷、电荷守恒定律、元电荷:e=×10-19C

2.库仑定律:F=kQ1Q2/r2(在真空中)

3.电场强度:E=F/q(定义式、计算式)

4.真空点(源)电荷形成的电场E=kQ/r2

5.匀强电场的场强E=UAB/d

6.电场力:F=qE

7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

8.电场力做功:WAB=qUAB=Eqd

9.电势能:EA=qφA

10.电势能的变化ΔEAB=EB-EA

11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)

12.电容C=Q/U(定义式,计算式)

13.平行板电容器的电容C=εr*S/4πkd=εS/d

14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m。

高中物理知识点总结归纳 第15篇

1、电场能的基本性质:电荷在电场中移动,电场力要对电荷做功。

2、电势φ

(1)定义:电荷在电场中某一点的电势能Ep与电荷量的比值。

(2)定义式:φ——单位:伏(V)——带正负号计算

(3)特点:

1、电势具有相对性,相对参考点而言。但电势之差与参考点的选择无关。

2、电势一个标量,但是它有正负,正负只表示该点电势比参考点电势高,还是低。

3、电势的大小由电场本身决定,与Ep和q无关。

4、电势在数值上等于单位正电荷由该点移动到零势点时电场力所做的功。

(4)电势高低的判断方法

1、根据电场线判断:沿着电场线电势降低。φA>φB

2、根据电势能判断:

正电荷:电势能大,电势高;电势能小,电势低。

负电荷:电势能大,电势低;电势能小,电势高。

结论:只在电场力作用下,静止的电荷从电势能高的地方向电势能低的地方运动。

高中物理知识点总结归纳 第16篇

1、当物体具有相对滑动趋势时,物体间产生的摩擦叫做静摩擦,这时产生的摩擦力叫静摩擦力。

2、物体所受到的静摩擦力有一个最大限度,这个最大值叫最xxx摩擦力。

3、静摩擦力的方向总与接触面相切,与物体相对运动趋势的方向相反。

4、静摩擦力的大小由物体的运动状态以及外部受力情况决定,与正压力无关,平衡时总与切面外力平衡。0≤F=f0≤fm

5、最xxx摩擦力的大小与正压力接触面的粗糙程度有关。fm=μ0·N(μ≤μ0)

6、静摩擦有无的判断:概念法(相对运动趋势);二力平衡法;xxx运动定律法;假设法(假设没有静摩擦)。

高中物理知识点总结归纳 第17篇

1.xxx第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。

a.只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态;

b.力是该变物体速度的原因;

c.力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)

d力是产生加速度的原因;

2.惯性:物体保持匀速直线运动或静止状态的性质叫惯性。

a.一切物体都有惯性;

b.惯性的大小由物体的质量决定;

c.惯性是描述物体运动状态改变难易的物理量;

3.xxx第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。

a.数学表达式:a=F合/m;

b.加速度随力的产生而产生、变化而变化、消失而消失;

c.当物体所受力的方向和运动方向一致时,物体加速;当物体所受力的方向和运动方向相反时,物体减速。

d.力的单位xxx的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1N;

4.xxx第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的;

a.作用力和反作用力同时产生、同时变化、同时消失;

b.作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上;

高中物理知识点总结归纳 第18篇

1.光是一种电磁波,能产生干涉和衍射。衍射有单缝和小孔,干涉有双缝和薄膜。单缝衍射中间宽,干涉(条纹)间距差不多。小孔衍射明暗环,薄膜干涉用处多。它可用来测工件,还可制成增透膜。泊松亮斑是衍射,干涉公式要把握。〖选修3-4〗

2.光照金属能生电,入射光线有极限。光电子动能大和小,与光子频率有关联。光电子数目多和少,与光线强弱紧相连。光电效应瞬间能发生,极限频率取决逸出功。

高中物理知识点总结归纳 第19篇

1、大的物体不一定不能看成质点,小的物体不一定能看成质点。

2、平动的物体不一定能看成质点,转动的物体不一定不能看成质点。

3、参考系不一定是不动的,只是假定为不动的物体。

4、选择不同的参考系物体运动情况可能不同,但也可能相同。

5、在时间轴上n秒时指的是n秒末。第n秒指的是一段时间,是第n个1秒。第n秒末和第n+1秒初是同一时刻。

6、忽视位移的矢量性,只强调大小而忽视方向。

7、物体做直线运动时,位移的大小不一定等于路程。

8、位移也具有相对性,必须选一个参考系,选不同的参考系时,物体的位移可能不同。

9、打点计时器在纸带上应打出轻重合适的小圆点,如遇到打出的是短横线,应调整一下振针距复写纸的高度,使之增大一点。

10、使用计时器打点时,应先接通电源,待打点计时器稳定后,再释放纸带。

11、使用电火花打点计时器时,应注意把两条白纸带正确穿好,墨粉纸盘夹在两纸带间;使用电磁打点计时器时,应让纸带通过限位孔,压在复写纸下面。

12、“速度”一词是比较含糊的统称,在不同的语境中含义不同,一般指瞬时速率、平均速度、瞬时速度、平均速率四个概念中的一个,要学会根据上、下文辨明“速度”的含义。平常所说的“速度”多指瞬时速度,列式计算时常用的是平均速度和平均速率。

13、着重理解速度的矢量性。有的同学受初中所理解的速度概念的影响,很难接受速度的方向,其实速度的方向就是物体运动的方向,而初中所学的“速度”就是现在所学的平均速率。

14、平均速度不是速度的平均。

15、平均速率不是平均速度的大小。

16、物体的速度大,其加速度不一定大。

17、物体的速度为零时,其加速度不一定为零。

18、物体的速度变化大,其加速度不一定大。

19、加速度的正、负仅表示方向,不表示大小。

20、物体的加速度为负值,物体不一定做减速运动。

21、物体的加速度减小时,速度可能增大;加速度增大时,速度可能减小。

22、物体的速度大小不变时,加速度不一定为零。

23、物体的加速度方向不一定与速度方向相同,也不一定在同一直线上。

24、位移图象不是物体的运动轨迹。

25、解题前先搞清两坐标轴各代表什么物理量,不要把位移图象与速度图象混淆。

26、图象是曲线的不表示物体做曲线运动。

27、由图象读取某个物理量时,应搞清这个量的大小和方向,特别要注意方向。

28、v-t图上两图线相交的点,不是相遇点,只是在这一时刻相等。

29、人们得出“重的物体下落快”的错误结论主要是由于空气阻力的影响。

30、严格地讲自由落体运动的物体只受重力作用,在空气阻力影响较小时,可忽略空气阻力的影响,近似视为自由落体运动。

31、自由落体实验实验记录自由落体轨迹时,对重物的要求是“质量大、体积小”,只强调“质量大”或“体积小”都是不确切的。

32、自由落体运动中,加速度g是已知的,但有时题目中不点明这一点,我们解题时要充分利用这一隐含条件。

33、自由落体运动是无空气阻力的理想情况,实际物体的运动有时受空气阻力的影响过大,这时就不能忽略空气阻力了,如雨滴下落的最后阶段,阻力很大,不能视为自由落体运动。

34、自由落体加速度通常可取或10m/s?,但并不是不变的,它随纬度和海拔高度的变化而变化。

35、四个重要比例式都是从自由落体运动开始时,即初速度v0=0是成立条件,如果v0≠0则这四个比例式不成立。

36、匀变速运动的各公式都是矢量式,列方程解题时要注意各物理量的方向。

37、常取初速度v0的方向为正方向,但这并不是一定的,也可取与v0相反的方向为正方向。

38、汽车刹车问题应先判断汽车何时停止运动,不要盲目套用匀减速直线运动公式求解。

39、找准追及问题的临界条件,如位移关系、速度相等等。

40、用速度图象解题时要注意图线相交的点是速度相等的点而不是相遇处。

41、产生弹力的条件之一是两物体相互接触,但相互接触的物体间不一定存在弹力。

42、某个物体受到弹力作用,不是由于这个物体的形变产生的,而是由于施加这个弹力的物体的形变产生的。

43、压力或支持力的方向总是垂直于接触面,与物体的重心位置无关。

44、xxx定律公式F=kx中的x是弹簧伸长或缩短的长度,不是弹簧的总长度,更不是弹簧原长。

45、弹簧弹力的大小等于它一端受力的大小,而不是两端受力之和,更不是两端受力之差。

46、杆的弹力方向不一定沿杆。

47、摩擦力的作用效果既可充当阻力,也可充当动力。

48、滑动摩擦力只以μ和N有关,与接触面的大小和物体的运动状态无关。

49、各种摩擦力的方向与物体的运动方向无关。

50、静摩擦力具有大小和方向的可变性,在分析有关静摩擦力的问题时容易出错。

51、最xxx摩擦力与接触面和正压力有关,静摩擦力与压力无关。

52、画力的图示时要选择合适的标度。

53、实验中的两个细绳套不要太短。

54、检查弹簧测力计指针是否指零。

55、在同一次实验中,使橡皮条伸长时结点的位置一定要相同。

56、使用弹簧测力计拉细绳套时,要使弹簧测力计的弹簧与细绳套在同一直线上,弹簧与木板面平行,避免弹簧与弹簧测力计外壳、弹簧测力计限位卡之间有摩擦。

57、在同一次实验中,画力的图示时选定的标度要相同,并且要恰当使用标度,使力的图示稍大一些。

58、合力不一定大于分力,分力不一定小于合力。

59、三个力的合力最大值是三个力的数值之和,最小值不一定是三个力的数值之差,要先判断能否为零。

60、两个力合成一个力的结果是惟一的,一个力分解为两个力的情况不惟一,可以有多种分解方式。

61、一个力分解成的两个分力,与原来的这个力一定是同性质的,一定是同一个受力物体,如一个物体放在斜面上静止,其重力可分解为使物体下滑的力和使物体压紧斜面的力,不能说成下滑力和物体对斜面的压力。

62、物体在粗糙斜面上向前运动,并不一定受到向前的力,认为物体向前运动会存在一种向前的“冲力”的说法是错误的。

63、所有认为惯性与运动状态有关的想法都是错误的,因为惯性只与物体质量有关。

64、惯性是物体的一种基本属性,不是一种力,物体所受的外力不能克服惯性。

65、物体受力为零时速度不一定为零,速度为零时受力不一定为零。

66、xxx第二定律 F=ma中的F通常指物体所受的合外力,对应的加速度a就是合加速度,也就是各个独自产生的加速度的矢量和,当只研究某个力产生加速度时xxx第二定律仍成立。

67、力与加速度的对应关系,无先后之分,力改变的同时加速度相应改变。

68、虽然由xxx第二定律可以得出,当物体不受外力或所受合外力为零时,物体将做匀速直线运动或静止,但不能说xxx第一定律是xxx第二定律的特例,因为xxx第一定律所揭示的物体具有保持原来运动状态的性质,即惯性,在xxx第二定律中没有体现。

69、xxx第二定律在力学中的应用广泛,但也不是“放之四海而皆准”,也有局限性,对于微观的高速运动的物体不适用,只适用于低速运动的宏观物体。

70、用xxx第二定律解决动力学的两类基本问题,关键在于正确地求出加速度a,计算合外力时要进行正确的受力分析,不要漏力或添力。

71、用正交分解法列方程时注意合力与分力不能重复计算。

72、注意F合=ma是矢量式,在应用时,要选择正方向,一般我们选择合外力的方向即加速度的方向为正方向。

73、超重并不是重力增加了,失重也不是失去了重力,超重、失重只是视重的变化,物体的实重没有改变。

74、判断超重、失重时不是看速度方向如何,而是看加速度方向向上还是向下。

75、有时加速度方向不在竖直方向上,但只要在竖直方向上有分量,物体也处于超、失重状态。

76、两个相关联的物体,其中一个处于超(失)重状态,整体对支持面的压力也会比重力大(小)。

77、国际单位制是单位制的一种,不要把单位制理解成国际单位制。

78、力的单位xxx不是基本单位而是导出单位。

79、有些单位是常用单位而不是国际单位制单位,如:小时、斤等。

80、进行物理计算时常需要统一单位。

81、只要存在与速度方向不在同一直线上的合外力,物体就做曲线运动,与所受力是否为恒力无关。

82、做曲线运动的物体速度方向沿该点所在的轨迹的切线,而不是合外力沿轨迹的切线。请注意区别。

83、合运动是指物体相对地面的实际运动,不一定是人感觉到的运动。

84、两个直线运动的合运动不一定是直线运动,两个匀速直线运动的合运动一定是匀速直线运动。两个匀变速直线运动的合运动不一定是匀变速直线运动。

85、运动的合成与分解实际上就是描述运动的物理量的合成与分解,如速度、位移、加速度的合成与分解。

86、运动的分解并不是把运动分开,物体先参与一个运动,然后再参与另一运动,而只是为了研究的方便,从两个方向上分析物体的运动,分运动间具有等时性,不存在先后关系。

87、竖直上抛运动整体法分析时一定要注意方向问题,初速度方向向上,加速度方向向下,列方程时可以先假设一个正方向,再用正、负号表示各物理量的方向,尤其是位移的正、负,容易弄错,要特别注意。

88、竖直上抛运动的加速度不变,故其v-t图象的斜率不变,应为一条直线。

89、要注意题目描述中的隐蔽性,如“物体到达离抛出点5m处”,不一定是由抛出点上升5m,有可能在下降阶段到达该处,也有可能在抛出点下方5m处。

90、平抛运动公式中的时间t是从抛出点开始计时的,否则公式不成立。

91、求平抛运动物体某段时间内的速度变化时要注意应该用矢量相减的方法。用平抛竖落仪研究平抛运动时结果是自由落体运动的小球与同时平抛的小球同时落地,说明平抛运动的竖直分运动是自由落体运动,但此实验不能说明平抛运动的水平分运动是匀速直线运动。

92、并不是水平速度越大斜抛物体的射程就越远,射程的大小由初速度和抛射角度两因素共同决定。

93、斜抛运动最高点的物体速度不等于零,而等于其水平分速度。

94、斜抛运动轨迹具有对称性,但弹道曲线不具有对称性。

95、在半径不确定的情况下,不能由角速度大小判断线速度大小,也不能由线速度大小判断角速度大小。

96、地球上的各点均绕地轴做匀速圆周运动,其周期及角速度均相等,各点做匀速圆周运动的半径不同,故各点线速度大小不相等。

97、同一轮子上各质点的角速度关系:由于同一轮子上的各质点与转轴的连线在相同的时间内转过的角度相同,因此各质点角速度相同。各质点具有相同的ω、T和n。

98、在齿轮传动或皮带传动(皮带不打滑,摩擦传动中接触面不打滑)装置正常工作的情况下,皮带上各点及轮边缘各点的线速度大小相等。

99、匀速圆周运动的xxx力就是物体的合外力,但变速圆周运动的xxx力不一定是合外力。

100、当xxx力有静摩擦力提供时,静摩擦力的大小和方向是由运动状态决定的。

高中物理知识点总结归纳 第20篇

1.匀强磁场有线圈,旋转产生交流电。电流电压电动势,变化规律是弦线。

中性面计时是正弦,平行面计时是余弦。

ω是最大值,有效值用热量来计算。

3.变压器供交流用,恒定电流不能用。

理想变压器,初级ui值,次级ui值,相等是原理。

电压之比值,正比匝数比;电流之比值,反比匝数比。

运用变压比,若求某匝数,化为匝伏比,方便地算出。

远距输电用,升压降流送,否则耗损大,用户后降压。

高中物理知识点总结归纳 第21篇

一、基本概念

1、质点

2、 参考系

3、坐标系

4、时刻和时间间隔

5、路程:物体运动轨迹的长度

6、位移:表示物体位置的变动。可用从起点到末点的有向线段来表示,是矢量。位移的大小小于或等于路程。

7、速度:

物理意义:表示物体位置变化的快慢程度。

分类平均速度:方向与位移方向相同

瞬时速度:

与速率的区别和联系速度是矢量,而速率是标量

平均速度=位移/时间,平均速率=路程/时间

瞬时速度的大小等于瞬时速率

8、加速度

物理意义:表示物体速度变化的快慢程度

定义:(即等于速度的变化率)

方向:与速度变化量的方向相同,与速度的方向不确定。(或与合力的方向相同)

二、运动图象(只研究直线运动)

1、x—t图象(即位移图象)

(1)、纵截距表示物体的初始位置。

(2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体静止,曲线表示物体作变速直线运动。

(3)、斜率表示速度。斜率的绝对值表示速度的大小,斜率的正负表示速度的方向。

2、v—t图象(速度图象)

(1)、纵截距表示物体的初速度。

(2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体作匀速直线运动,曲线表示物体作变加速直线运动(加速度大小发生变化)。

(3)、纵坐标表示速度。纵坐标的绝对值表示速度的大小,纵坐标的正负表示速度的方向。

(4)、斜率表示加速度。斜率的绝对值表示加速度的大小,斜率的正负表示加速度的方向。

(5)、面积表示位移。横轴上方的面积表示正位移,横轴下方的面积表示负位移。

三、实验:用打点计时器测速度

1、两种打点即使器的异同点

2、纸带分析;

(1)、从纸带上可直接判断时间间隔,用刻度尺可以测量位移。

(2)、可计算出经过某点的瞬时速度

(3)、可计算出加速度

高中物理知识点总结归纳 第22篇

(1)定义:电势相等的点构成的面。

(2)特点:

等势面上各点电势相等,在等势面上移动电荷,电场力不做功。

等势面与电场线垂直

两等势面不相交

等势面的密集程度表示场强的大小:疏弱密强。

画等势面时,相邻等势面间的电势差相等。

(3)判断电场线上两点间的电势差的大小:靠近场源(场强大)的两间的电势差大于远离场源(场强小)相等距离两点间的电势差。

高中物理知识点总结归纳 第23篇

在只有重力(或弹簧弹力做功)的情形下,物体的动能和势能(重力势能、弹簧的弹性势能)发生相互转化,但机械能的总量保持不变。

1.机械能守恒定律的适用条件:只有重力或弹簧弹力做功。

2.机械能守恒定律的数学表达式:

3.在只有重力或弹簧弹力做功时,物体的机械能处处相等;

4.应用机械能守恒定律的解题思路

(1)确定研究对象,和研究过程;

(2)分析研究对象在研究过程中的受力,判断是否遵受机械能守恒定律;

(3)恰当选择参考平面,表示出初、末状态的机械能;

(4)应用机械能守恒定律,立方程、求解。

高中物理知识点总结归纳 第24篇

一、基本关系式v=v0+at

x=v0t+1/2at2

v2-vo2=2ax

v=x/t=(v0+v)/2

二、推论

1、 vt/2=v=(v0+v)/2

2、vx/2=

3、△x=at2 { xm-xn=(m-n)at2}

4、初速度为零的匀变速直线运动的比例式

应用基本关系式和推论时注意:

(1)、确定研究对象在哪个运动过程,并根据题意画出示意图。

(2)、求解运动学问题时一般都有多种解法,并探求最佳解法。

三、两种运动特例

(1)、自由落体运动:v0=0 a=g v=gt h=1/2gt2 v2=2gh

(2)、竖直上抛运动;v0=0 a=-g

四、关于追及与相遇问题

1、寻找三个关系:时间关系,速度关系,位移关系。两物体速度相等是两物体有最大或最小距离的临界条件。

2、处理方法:物理法,数学法,图象法。

五、理解伽俐略科学研究过程的基本要素。

高中物理知识点总结归纳 第25篇

1、机械波的特点:

(1)每一质点都以它的平衡位置为中心做xxx振动;后一质点的振动总是落后于带动它的前一质点的振动。

(2)波只是传播运动形式(振动)和振动能量,介质并不随波迁移。

用横坐标x表示xxx的传播方向上各质点的平衡位置,纵坐标y表示某一时刻各质点偏离平衡位置的位移。xxx的图象是正弦曲线,也叫正弦波xxx的波形曲线与质点的振动图象都是正弦曲线,但他们的意义是不同的。

2、波长、波速和频率(周期)的关系

描述机械波的物理量

(1)波长:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长。振动在一个周期内在介质中传播的距离等于波长。

(2)频率f:波的频率由波源决定,在任何介质中频率保持不变。

(3)波速v:单位时间内振动向外传播的距离。波速的大小由介质决定。

3、波的反射和xxx的干涉和衍射Ⅰ

4、惠xxx原理:介质中任一波面上的各点,都可以看作发射子波的波源,而后任意时刻,xxx波xxx前进方向的包络面便是新的波面。

5、根据惠xxx原理,只要知道某一时刻的波阵面,就可以确定下一时刻的波阵面。、波的干涉和衍射相差不多。

衍射:波绕过障碍物或小孔继续传播的现象。产生显著衍射的条件是障碍物或孔的尺寸比波长小或xxx长干涉:频率相同的两列波叠加,使某些区域的振动加强,使某些区域振动减弱,并且振动加强和振动减弱区域相互间隔的现象。产生稳定干涉现象的条件是:两列波的频率相同,相差恒定。

稳定的干涉现象中,振动加强区和减弱区的空间位置是不变的,加强区的振幅等于两列波振幅之和,减弱区振幅等于两列波振幅之差。判断加强与减弱区域的方法一般有两种:一是画峰谷波形图,峰峰或谷谷相遇增强,峰谷相遇减弱。二是相干波源振动相同时,某点到二波源程波差是波长整数倍时振动增强,是半波长奇数倍时振动减弱。干涉和衍射是波所特有的现象。

6、多普勒效应

1.多普勒效应:由于波源和观察者之间有相对运动,使观察者感到频率变化的现象叫做多普勒效应。他是奥地利物理学家多普勒在1842年发现的。

2.多普勒效应的成因:声源完成一次全振动,向外发出一个波长的波,频率表示单位时间内完成的全振动的次数,因此波源的频率等于单位时间内波源发出的完全波的个数,而观察者听到的声音的音调,是由观察者接受到的频率,即单位时间接收到的完全波的个数决定的。

3.多普勒效应是波动过程共有的特征,不仅机械波,电磁波和光波也会发生多普勒效应。

4.多普勒效应的应用:

①现代医学上使用的胎心检测器、血流测定仪等有许多都是根据这种原理制成。

②根据汽笛声判断火车的运动方向和快慢,以炮弹飞行的尖叫声判断炮弹的飞行方向等。

③红移现象:在20世纪初,科学家们发现许多星系的谱线有“红衣现象”,所谓“红衣现象”,就是整个光谱结构向光谱红色的一端偏移,这种现象可以用多普勒效应加以解释:由于星系远离我们运动,接收到的星光的频率变小,谱线就向频率变小(即波长变大)的红端移动。科学家从红移的大小还可以算出这种远离运动的速度。这种现象,是证明宇宙在膨胀的一个有力证据。

7、波的反射

xxx遇到障碍物会返回来继续传播,这种现象xxx的反射.

2.反射定律:入射线、法线、反射线在同一平面内,入射线与反射线分居法线两侧,反射角等于入射角。

入射角(i)和反射角(i’):入射波的波线与平面法线的夹角i叫做入射角.反射波的波线与平面法线的夹角i’叫做反射角.

反射波的波长、频率、波速都跟入射波相同.波遇到两种介质界面时,总存在反射

8、波的折射

xxx的折射:波从一种介质进入另一种介质时,波的传播方向发生了改变的现象xxx的折射

2.折射规律:

(1)折射角(r):xxx的波线与两介质界面法线的夹角r叫做折射角.

(2)折射定律:入射线、法线、折射线在同一平面内,入射线与折射线分居法线两侧。入射角的正弦跟折射角的正弦之比等于波在第一种介质中的速度跟波在第二种介质中的速度之比:当入射速度大于折射速度时,折射角折向法线。当入射速度小于折射速度时,折射角折离法线。

当垂直界面入射时,传播方向不改变,属折射中的特例.xxx的折射中,波的频率不改变,波速和波长都发生改变.

9、光的折射定律折射率

光的折射定律,也叫斯涅耳定律:入射角的正弦跟折射角的正弦成正比.如果用n来表示这个比例常数,就有折射率:光从一种介质射入另一种介质时,虽然入射角的正弦跟折射角的正弦之比为一常数n,但是对不同的介质来说,这个常数n是不同的.这个常数n跟介质有关系,是一个反映介质的光学性质的物理量,我们把它叫做介质的折射率.

i是光线在真空中与法线之间的夹角.

r是光线在介质中与法线之间的夹角.光从真空射入某种介质时的折射率,叫做该种介质的绝对折射率,也简称为某种介质的折射率

高中物理知识点总结归纳 第26篇

1.xxx第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

2.xxx第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

3.xxx第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}

5.超重:FN>G,失重:FN

6.xxx运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子

高中物理知识点总结归纳 第27篇

1.光本性学说的发展简史

(1)xxx的微粒说:认为光是高速粒子流.它能解释光的直进现象,光的反射现象.

(2)惠xxx的波动说:认为光是某种振动,xxx的形式向周围传播.它能解释光的干涉和衍射现象.

2、光的干涉

光的干涉的条件是:有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的方法有两种:⑴利用激光(因为激光发出的是单色性极好的光)。⑵设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平面镜形成相干光源的示意图。

2.干涉区域内产生的亮、暗纹

⑴亮纹:屏上某点到双缝的光程差等于波长的整数倍,即δ=nλ(n=0,1,2,……)

⑵暗纹:屏上某点到双缝的'光程差等于半波长的奇数倍,即δ=(n=0,1,2,……)

相邻亮纹(暗纹)间的距离。用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。

3.衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。

⑴各种不同形状的障碍物都能使光发生衍射。

⑵发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于时,有明显衍射现象。)

⑶在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。

4、光的偏振现象:通过偏振片的光波,在垂直于传播方向的平面上,只沿着一个特定的方向振动,称为偏振光。光的偏振说明光是xxx。

5.光的电磁说

⑴光是电磁波(xxx韦预言、赫兹用实验证明了正确性。)

⑵电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外,相邻两个波段间都有重叠。

各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ射线是原子核受到激发后产生的。

⑶红外线、紫外线、X射线的主要性质及其应用举例。

种类产生主要性质应用举例

红外线一切物体都能发出热效应遥感、遥控、加热

紫外线一切高温物体能发出化学效应荧光、杀菌、合成VD2

X射线阴极射线射到固体表面穿透能力强人体透视、金属探伤

高中物理知识点总结归纳 第28篇

1、LC回路振荡电流的产生

先给电容器充电,把能以电场能的形式储存在电容器中。

(1)闭合电路,电容器C通过电感线圈L开始放电。由于线圈中产生的自感电动势的阻碍作用。放电开始瞬时电路中电流为零,磁场能为零,极板上电荷量最大。随后,电路中电流加大,磁场能加大,电场能减少,直到电容器C两端电压为零。放电结束,电流达到最大、磁场能最多。

(2)由于电感线圈L中自感电动势的阻碍作用电流不会立即消失,保持原来电流方向,对电容器反方向充电,磁场能减少,电场能增多。充电流由大到小,充电结束时,电流为零。

接着电容器又开始放电,重复(1)、(2)过程,但电流方向与(1)时的电流方向相反。电磁波的发射和接收有效的向外发射电磁波的条件:

(1)要有足够高的振荡频率,因为频率越高,发射电磁波的本领越大。

(2)振荡电路的电场和磁场必须分散到尽可能大的空间,才有可能有效的将电磁场的能量传播出去。采用什么手段可以有效的向外界发射电磁波?改造振荡电路由闭合电路成开放电路

2、电磁波的接收条件

①电谐振:当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电路中产生的振荡电流最强,这种现象叫做电谐振。

②调谐:使接收电路产生电谐振的过程。通过改变电容器电容来改变调谐电路的频率。

xxx:从接收到的高频振荡中“检”出所携带的信号。

3、光的电磁说

(1)xxx韦计算出电磁波传播速度与光速相同,说明光具有电磁本质。

(2)电磁波谱

电磁波谱无线电波红外线可见光紫外线X射线射线产生机理在振荡电路中,自由电子作周期性运动产生原子的外层电子受到激发产生的原子的内层电子受到激发后产生的原子核受到激发后产生的。

(3)光谱

①观察光谱的仪器,分光镜。

②光谱的分类,产生和特征发射光谱连续光谱产生特征由炽热的固体、液体和高压气体发光产生的由连续分布的,一切波长的光组成明线光谱由稀薄气体发光产生的由不连续的一些亮线组成吸收光谱高温物体发出的白光,通过物质后某些波长的光被吸收而产生的在连续光谱的背景上,由一些不连续的暗线组成的光谱

③光谱分析:

一种元素,在高温下发出一些特点波长的光,在低温下,也吸收这些波长的光,所以把明线光波中的亮线和吸收光谱中的暗线都称为该种元素的特征谱线,用来进行光谱分析。

4、电磁波的应用:

1、电视

简单地说:电视信号是电视台先把影像信号转变为可以发射的电信号,发射出去后被接收的电信号通过还原,被还原为光的图象重现荧光屏。电子束把一幅图象按照各点的明暗情况,逐点变为强弱不同的信号电流,通过天线把带有图象信号的电磁波发射出去。

2、雷达工作原理

利用发射与接收之间的时间差,计算出物体的距离。

3、手机

在待机状态下,手机不断的发射电磁波,与周围环境交换信息。手机在建立连接的过程中发射的电磁波特别强。电磁波与机械波的比较:

共同点:都能产生干涉和衍射现象;它们波动的频率都取决于波源的频率;在不同介质中传播,频率都不变。

不同点:机械波的传播一定需要介质,其波速与介质的性质有关,xxx的频率无关.而电磁波本身就是一种物质,它可以在真空中传播,也可以在介质中传播.电磁波在真空中传播的速度均为×108m/s,在介质中传播时,波速和波长不仅与介质性质有关,还与频率有关.不同电磁波产生的机理

无线电波是振荡电路中自由电子作周期性的运动产生的.红外线、可见光、紫外线是原子外层电子受激发产生的.伦琴射线是原子内层电子受激发产生的.γ射线是原子核受激发产生的.

频率(波长)不同的电磁波表现出作用不同.

红外线主要作用是热作用,可以利用红外线来加热物体和进行红外线遥感;紫外线主要作用是化学作用,可用来杀菌和消毒;

伦琴射线有较强的穿透本领,利用其穿透本领与物质的密度有关,进行对人体的透视和检查部件的缺陷;γ射线的穿透本领更大,在工业和医学等领域有广泛的应用,如探伤,测厚或用γ刀进行手术.

高中物理知识点总结归纳 第29篇

1电场基本规律

1、库仑定律

(1)定律内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。

(2)表达式:k=×109N·m2/C2xxx电力常量

(3)适用条件:真空中静止的点电荷。

2、电荷守恒定律

电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变。

(1)三种带电方式:摩擦起电,感应起电,接触起电。

(2)元电荷:最小的带电单元,任何带电体的带电量都是元电荷的整数倍,e=×10-19C——密立根测得e的值。

2电场能的性质

1、电场能的基本性质:电荷在电场中移动,电场力要对电荷做功。

2、电势φ

(1)定义:电荷在电场中某一点的电势能Ep与电荷量的比值。

(2)定义式:φ——单位:伏(V)——带正负号计算

(3)特点:

1、电势具有相对性,相对参考点而言。但电势之差与参考点的选择无关。

2、电势一个标量,但是它有正负,正负只表示该点电势比参考点电势高,还是低。

3、电势的大小由电场本身决定,与Ep和q无关。

4、电势在数值上等于单位正电荷由该点移动到零势点时电场力所做的功。

(4)电势高低的判断方法

1、根据电场线判断:沿着电场线电势降低。φA>φB

2、根据电势能判断:

正电荷:电势能大,电势高;电势能小,电势低。

负电荷:电势能大,电势低;电势能小,电势高。

结论:只在电场力作用下,静止的电荷从电势能高的地方向电势能低的地方运动。

3电势能Ep

(1)定义:电荷在电场中,由于电场和电荷间的'相互作用,由位置决定的能量。电荷在某点的电势能等于电场力把电荷从该点移动到零势能位置时所做的功。

(2)定义式:——带正负号计算

(3)特点:

1、电势能具有相对性,相对零势能面而言,通常选大地或无穷远处为零势能面。

2、电势能的变化量△Ep与零势能面的选择无关。

4电势差UAB

(1)定义:电场中两点间的电势之差。也叫电压。

(2)定义式:UAB=φA-φB

(3)特点:

1、电势差是标量,但是却有正负,正负只表示起点和终点的电势谁高谁低。若UAB>0,则UBA<0。

2、单位:伏

3、电场中两点的电势差是确定的,与零势面的选择无关。

4、U=Ed匀强电场中两点间的电势差计算公式。——电势差与电场强度之间的关系。

xxx电平衡状态

(1)定义:导体内不再有电荷定向移动的稳定状态。

(2)特点:

1、处于静电平衡状态的导体,内部场强处处为零。

2、感应电荷在导体内任何位置产生的电场都等于外电场在该处场强的大小相等,方向相反。

3、处于静电平衡状态的整个导体是个等势体,导体表面是个等势面。

4、电荷只分布在导体的外表面,在导体表面的分布与导体表面的弯曲程度有关,越弯曲,电荷分布越多。

6电场力做功WAB

(1)电场力做功的特点:电场力做功与路径无关,只与初末位置有关,即与初末位置的电势差有关。

(2)表达式:WAB=UABq—带正负号计算(适用于任何电场)WAB=Eqd—d沿电场方向的距离。——匀强电场

(3)电场力做功与电势能的关系WAB=-△Ep=EpA-EPB

结论:电场力做正功,电势能减少电场力做负功,电势能增加。

7等势面

(1)定义:电势相等的点构成的面。

(2)特点:

等势面上各点电势相等,在等势面上移动电荷,电场力不做功。

等势面与电场线垂直

两等势面不相交

等势面的密集程度表示场强的大小:疏弱密强。

画等势面时,相邻等势面间的电势差相等。

(3)判断电场线上两点间的电势差的大小:靠近场源(场强大)的两间的电势差大于远离场源(场强小)相等距离两点间的电势差。

高中物理知识点总结归纳 第30篇

1.阿伏加德罗常数NA=×1023/mol;分子直径数量级10-10米

2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}

3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。

4.分子间的引力和斥力(1)r

(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)

(3)r>r0,f引>f斥,F分子力表现为引力

(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0

5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的)

高中物理知识点总结归纳 第31篇

1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

2.互成角度力的合成:

F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

3.合力大小范围:|F1-F2|≤F≤|F1+F2|

4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

(1)力(矢量)的合成与分解遵循平行四边形定则;

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

高中物理知识点总结归纳 第32篇

1、前384年—前322年,古希腊杰出思想家xxx多德:在对待“力与运动的关系”问题上,错误的认为“维持物体运动需要力”。

2、1638年意大利物理学家伽利略:最早研究“匀加速直线运动”;论证“重物体不会比轻物体下落得快”的物理学家;利用著名的“斜面理想实验”得出“在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去即维持物体运动不需要力”的结论;发明了空气温度计;理论上验证了落体运动、抛体运动的规律;还制成了第一架观察天体的望远镜;第一次把“实验”引入对物理的研究,开阔了人们的眼界,打开了人们的新思路;发现了“摆的等时性”等。

3、1683年,英国科学家xxx:总结三大运动定律、发现万有引力定律。另外xxx还发现了光的色散原理;创立了微积分、发明了二项式定理;研究光的本性并发明了反射式望远镜。其最有影响的著作是《自然哲学的数学原理》。

4、1798年英国物理学家xxx许:利用扭秤装置比较准确地测出了万有引力常量G=×11-11n·m2/kg2(微小形变放大思想)。

5、1905年xxx坦:提出狭义相对论,经典力学不适用于微观粒子和高速运动物体。即“宏观”、“低速”是xxx运动定律的适用范围。

高中物理知识点总结归纳 第33篇

一、xxx第一定律

1、内容:(揭示物体不受力或合力为零的情形)

2、两个概念:

①、力

②、惯性:(一切物体都具有惯性,质量是惯性大小的唯一量)

二、xxx第二定律

1、内容:(不能从纯数学的角度表述)

2、公式:F合=ma

3、理解xxx第二定律的要点:

①、式中F是物体所受的一切外力的合力。

②、矢量性

③、瞬时性

④、独立性

⑤、相对性

三、xxx第三定律

作用力和反作用力的概念

1、内容

2、作用力和反作用力的特点:

①等值、反向、共线、异点

②瞬时对应

③性质相同

④各自产生其作用效果

3、一对相互作用力与一对平衡力的异同点

四、力学单位制

1、力学基本物理量:长度(l)质量(m)时间(t)

力学基本单位:米(m)千克(kg)秒(s)

2、应用:用单位判断结果表达式,能肯定错误(但不能肯定正确)

五、动力学的两类问题。

1、已知物体的受力情况,求物体的运动情况(v0 v t x )

2、已知物体的运动情况,求物体的受力情况( F合或某个分力)

3、应用xxx第二定律解决问题的一般思路

(1)明确研究对象。

(2)对研究对象进行受力情况分析,画出受力示意图。

(3)建立直角坐标系,以初速度的方向或运动方向为正方向,与正方向相同的力为正,与正方向相反的力为负。在Y轴和X轴分别列xxx第二定律的方程。

(4)解方程时,所有物理量都应统一单位,一般统一为国际单位。

4、分析两类问题的基本方法

(1)抓住受力情况和运动情况之间联系的桥梁——加速度。

(2)分析流程图

六、平衡状态、平衡条件、推论

1、处理方法:解三角形法(合成法、分解法、相似三角形法、封闭三角形法)和正交分解法

2、若物体受三力平衡,封闭三角形法最简捷。若物体受四力或四力以上平衡,用正交分解法

七、超重和失重

1、超重现象和失重现象

2、超重指加速度向上(加速上升和减速下降),超了ma;失重指加速度向下(加速下降和减速上升),失ma。

高中物理知识点总结归纳 第34篇

两个相互接触的物体,当它们发生相对运动或具有相对运动的趋势时,在接触面产生阻碍相对运动或相对运动趋势的力叫做摩擦力。当两个物体间只有相对运动的趋势,而没有相对运动,这时的摩擦力叫做静摩擦力。两个物体间的静摩擦力有一个限度,两个物体刚刚开始相对运动时,它们之间的摩擦力称为最xxx摩擦力。两个物体间实际发生的静摩擦力F在0和最xxx摩擦力Fmax之间。静摩擦力的方向总是沿着接触面,并且跟物体相对运动趋势的方向相反。

高中物理知识点总结归纳 第35篇

常见的力

1.重力G=mg (方向竖直向下,g=≈10m/s2,作用点在重心,适用于地球表面附近)

2.xxx定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最xxx摩擦力)

5.万有引力F=Gm1m2/r2 (G=×10-11N?m2/kg2,方向在它们的连线上)

6.静电力F=kQ1Q2/r2 (k=×109N?m2/C2,方向在它们的连线上)

7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

力的合成与分解

1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

2.互成角度力的合成:

F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

3.合力大小范围:|F1-F2|≤F≤|F1+F2|

4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

高中物理知识点总结归纳 第36篇

1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}

3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}

4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}

5.动量守恒定律:p前总=p后总或p=p’?也可以是m1v1+m2v2=m1v1?+m2v2?

6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}

7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}

8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}

9.物体m1以v1初速度与静止的物体m2发生弹性正碰:

v1?=(m1-m2)v1/(m1+m2) v2?=2m1v1/(m1+m2)

10.由9得的推论——-等质量弹性正碰时二者交换速度(动能守恒、动量守恒)

11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失

E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}

高中物理知识点总结归纳 第37篇

高中物理会考知识点总结

第1章力

一、力:力是物体间的相互作用。

1、力的国际单位是xxx,用N表示;

2、力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;

3、力的示意图:用一个带箭头的线段表示力的方向;

4、力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;

(1)重力:由于地球对物体的吸引而使物体受到的力;

(A)重力不是万有引力而是万有引力的一个分力;

(B)重力的方向总是竖直向下的(垂直于水平面向下)

(C)测量重力的仪器是弹簧秤;

(D)重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心;

(2)弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力;

(A)产生弹力的条件:二物体接触、且有形变;xxx物体发生形变产生弹力;

(B)弹力包括:支持力、压力、推力、拉力等等;

(C)支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向;

(D)在弹性限度内弹力跟形变量成正比;F=Kx

(3)摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力;

(A)产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力;

(B)摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;

(C)滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力;

(D)静摩擦力的大小等于使物体发生相对运动趋势的外力;

(4)合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力;

(A)合力与分力的作用效果相同;

(B)合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力;

(C)合力大于或等于二分力之差,小于或等于二分力之和;

(D)分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法);

二、矢量:既有大小又有方向的物理量。

如:力、位移、速度、加速度、动量、冲量

标量:只有大小没有方向的物力量如:时间、速率、功、功率、路程、电流、磁通量、能量

三、物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零;

1、在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向;

2、在N个共点力作用下物体处于`平衡状态,则任意第N个力与(N-1)个力的合力等大反向;

3、处于平衡状态的物体在任意两个相互垂直方向的合力为零;

第2章直线运动

一、机械运动:一物体相对其它物体的位置变化,叫机械运动;

1、参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止);

2、质点:只考虑物体的质量、不考虑其大小、形状的物体;

(1)质点是一理想化模型;

(2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时;

如:研究地球绕太阳运动,火车从北京到上海;

3、时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段;

如:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔;

4、位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线;

(1)位移为零、路程不一定为零;路程为零,位移一定为零;

(2)只有当质点作单向直线运动时,质点的位移才等于路程;

(3)位移的国际单位是米,用m表示

5、位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移;

(1)匀速直线运动的位移图像是一条与横轴平行的直线;

(2)匀变速直线运动的位移图像是一条倾斜直线;

(3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大;

6、速度是表示质点运动快慢的物理量;

(1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度;

(2)速率只表示速度的大小,是标量;

7、加速度:是描述物体速度变化快慢的物理量;

(1)加速度的定义式:a=vt-v0/t

(2)加速度的大小与物体速度大小无关;

(3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零;

(4)速度改变等于末速减初速。加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关;

(5)加速度是矢量,加速度的方向和速度变化方向相同;

(6)加速度的国际单位是m/s2

二、匀变速直线运动的规律:

1、速度:匀变速直线运动中速度和时间的关系:vt=v0+at

注:一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值;

(1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均;

(2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均;

2、位移:匀变速直线运动位移和时间的关系:s=v0t+1/2at

注意:当物体作加速运动时a取正值,当物体作减速运动时a取负值;

3、推论:2as=vt2-v02

4、作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植;s2-s1=aT2

5、初速度为零的匀加速直线运动:前1秒,前2秒,??位移和时间的关系是:位移之比等于时间的平方比;第1秒、第2秒??的位移与时间的关系是:位移之比等于奇数比。

三、自由落体运动:只在重力作用下从高处静止下落的物体所作的运动;

1、位移公式:h=1/2gt2

2、速度公式:vt=gt

3、推论:2gh=vt2

第3章xxx定律

一、xxx第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。

1、只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态;

2、力是该变物体速度的原因;

3、力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)

4、力是产生加速度的原因;

二、惯性:物体保持匀速直线运动或静止状态的性质叫惯性。

1、一切物体都有惯性;

2、惯性的大小由物体的质量唯一决定;

3、惯性是描述物体运动状态改变难易的物理量;

三、xxx第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。

1、数学表达式:a=F合/m;

2、加速度随力的产生而产生、变化而变化、消失而消失;

3、当物体所受力的方向和运动方向一致时,物体加速;当物体所受力的方向和运动方向相反时,物体减速。

4、力的单位xxx的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1N;

四、xxx第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的;

1、作用力和反作用力同时产生、同时变化、同时消失;

2、作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上。

第4章曲线运动 、万有引力定律

一、曲线运动:质点的运动轨迹是曲线的运动;

1、曲线运动中速度的方向在时刻改变,质点在某一点(或某一时刻)的速度方向是曲线在这一点的切线方向

2、、质点作曲线运动的条件:质点所受合外力的方向与其运动方向不在同一条直线上,且轨迹向其受力方向偏折。

3、曲线运动的特点:

4、曲线运动一定是变速运动;

5、曲线运动的加速度(合外力)与其速度方向不在同一条直线上;

6、力的作用:

(1)力的方向与运动方向一致时,力改变速度的大小;

(2)力的方向与运动方向垂直时,力改变速度的方向;

(3)力的方向与速度方向既不垂直,又不平行时,力既搞变速度的大小又改变速度的方向;

二、运动的合成和分解:

1、判断和运动的方法:物体实际所作的运动是合运动

2、合运动与分运动的等时性:合运动与各分运动所用时间始终相等;

3、合位移和分位移,合速度和分速度,和加速度与分加速度均遵守平行四边形定则;

三、平抛运动:被水平抛出的物体在在重力作用下所作的运动叫平抛运动;

1、平抛运动的实质:物体在水平方向上作匀速直线运动,在竖直方向上作自由落体运动的合运动;

2、水平方向上的匀速直线运动和竖直方向上的自由落体运动具有等时性;

3、求解方法:分别研究水平方向和竖直方向上的二分运动,在用平行四边形定则求和运动;

四、匀速圆周运动:质点沿圆周运动,如果在任何相等的时间里通过的圆弧相等,这种运动就叫做匀速圆周运动;

1、线速度的大小等于弧长除以时间:v=s/t,线速度方向就是该点的切线方向;

2、角速度的大小等于质点转过的角度除以所用时间:ω=Φ/t

3、角速度、线速度、周期、频率间的关系:

(1)v=2πr/T; (2) ω=2π/T; (3)V=ωr; (4)、f=1/T;

4、xxx力:

(1)定义:做匀速圆周运动的物体受到的沿半径指向圆心的力,这个力叫xxx力。

(2)方向:总是指向圆心,与速度方向垂直。

(3)特点:①只改变速度方向,不改变速度大小②是根据作用效果命名的。

(4)计算公式:F向=mv2/r=mω2r

5、xxx加速度:a向= v/r=ωr

五、xxx的三大定律:

1、xxx第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上;

说明:在中学间段,若无特殊说明,一般都把行星的运动轨迹认为是圆;

2、xxx第三定律:所有行星与太阳的连线在相同的时间内扫过的面积相等;

3、xxx第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等;公式:R3/T2=K;

说明:(1)R表示轨道的半长轴,T表示公转周期,K是常数,其大小之与太阳有关;

(2)当把行星的轨迹视为圆时,R表示愿的半径;

(3)该公式亦适用与其它天体,如绕地球运动的卫星;

六、万有引力定律:自然界中任何两个物体都是互相吸引的,引力的大小跟这两个物体的质量成正比,跟它们的距离的二次方成反比.

1、计算公式:F=GMm/r2

2、解决天体运动问题的思路:

(1)应用万有引力等于xxx力;应用匀速圆周运动的线速度、周期公式;

(2)应用在地球表面的物体万有引力等于重力;

(3)如果要求密度,则用m=ρV,V=4πR3/3

第5章机械能

一、功:功等于力和物体沿力的方向的位移的乘积;

1、计算公式:w=Fs;

2、推论:w=Fscosθ, θ为力和位移间的夹角;

3、功是标量,但有正、负之分,力和位移间的夹角为锐角时,力作正功,力与位移间的夹角是钝角时,力作负功;

二、功率:是表示物体做功快慢的物理量;

1、求平均功率:P=W/t;

2、求瞬时功率:p=Fv,当v是平均速度时,可求平均功率;

3、功、功率是标量;

三、功和能间的关系:功是能的转换量度;做功的过程就是能量转换的过程,做了多少功,就有多少能发生了转化;

四、动能定理:合外力做的功等于物体动能的变化。

1、数学表达式:w合=mvt2/2-mv02/2

2、适用范围:既可求恒力的功亦可求变力的功;

3、应用动能定理解题的优点:只考虑物体的初、末态,不管其中间的运动过程;

4、应用动能定理解题的步骤:

(1)对物体进行正确的受力分析,求出合外力及其做的功;

(2)确定物体的初态和末态,表示出初、末态的动能;

(3)应用动能定理建立方程、求解

五、重力势能:物体的重力势能等于物体的重量和它的速度的乘积。

1、重力势能用EP来表示;

2、重力势能的数学表达式: EP=mgh;

3、重力势能是标量,其国际单位是焦耳;

4、重力势能具有相对性:其大小和所选参考系有关;

5、重力做功与重力势能间的关系

(1)物体被举高,重力做负功,重力势能增加;

(2)物体下落,重力做正功,重力势能减小;

(3)重力做的功只与物体初、末为置的高度有关,与物体运动的路径无关

六、机械能守恒定律:在只有重力(或弹簧弹力做功)的情形下,物体的动能和势能(重力势能、弹簧的弹性势能)发生相互转化,但机械能的总量保持不变。

1、机械能守恒定律的适用条件:只有重力或弹簧弹力做功;

2、机械能守恒定律的数学表达式:

3、在只有重力或弹簧弹力做功时,物体的机械能处处相等;

4、应用机械能守恒定律的解题思路

(1)确定研究对象,和研究过程;

(2)分析研究对象在研究过程中的受力,判断是否遵受机械能守恒定律;

(3)恰当选择参考平面,表示出初、末状态的机械能;

(4)应用机械能守恒定律,立方程、求解;

第六章机械振动和机械波

一、机械振动:物体在平衡位置附近所做的往复运动,叫机械振动。

1、平衡位置:机械振动的中心位置;

2、机械振动的位移:以平衡位置为起点振动物体所在位置为终点的有向线段;

3、回复力:使振动物体回到平衡位置的力;

(1)回复力的方向始终指向平衡位置;

(2)回复力不是一重特殊性质的力,而是物体所受外力的合力;

4、机械振动的特点:

(1)往复性; (2)周期性;

二、简谐运动:物体所受回复力的大小与位移成正比,且方向始终指向平衡位置的运动;

(1)回复力的大小与位移成正比;

(2)回复力的方向与位移的方向相反;

(3)计算公式:F=-Kx;

如:音叉、摆钟、单摆、弹簧振子;

三、全振动:振动物体如:从0出发,经A,再到O,再到A/,最后又回到0的周期性的过程叫全振动。

例1:从A至o,从xxxA/,是一次全振动吗?

例2:振动物体从A/,出发,试说出它的一次全振动过程;

四、振幅:振动物体离开平衡位置的最大距离。

1、振幅用A表示;

2、最大回复力F大=KA;

3、物体完成一次全振动的路程为4A;

4、振幅是表示物体振动强弱的物理量;振幅越大,振动越强,能量越大;

五、周期:振动物体完成一次全振动所用的时间;

1、T=t/n (t表示所用的总时间,n表示完成全振动的次数)

2、振动物体从平衡位置到最远点,从最远点到平衡为置所用的时间相等,等于T/4;

六、频率:振动物体在单位时间内完成全振动的次数;

1、f=n/t;

2、f=1/T;

3、固有频率:由物体自身性质决定的频率;

七、简谐运动的图像:表示作简谐运动的物体位移和时间关系的图像。

1、若从平衡位置开始计时,其图像为正弦曲线;

2、若从最远点开始计时,其图像为余弦曲线;

3、简谐运动图像的作用:

(1)确定简谐运动的周期、频率、振幅;

(2)确定任一时刻振动物体的位移;

(3)比较不同时刻振动物体的速度、动能、势能的大小:离平衡位置跃进动能越大、速度越大,势能越小;

(4)判断某一时刻振动物体的运动方向:质点必然向相邻的后一时刻所在位置运动

4、作受迫振动的物体的振动频率等于驱动力的频率与其固有频率无关;物体发生共振的条件:物体的固有频率等于驱动力的频率;

八、单摆:用一轻质细绳一端固定一小球,另一端固定在悬点的装置。

1、当单摆的摆角很小(小于5度)时,所作的运动是简谐运动;

2、单摆的周期公式:T=2π(l/g)1/2

3、单摆在摆动过程中的能量关系:在平衡位置动能最大、重力势能最小;在最远点动能为零,重力势能最大;

九、机械波:机械振动在介质中的传播就形成了机械波。

1、产生机械波的条件:

(1)有波源; (2)有介质;

2、机械波的实质:机械波只是机械振动这种运动形式的传播,介质本身不会沿播的传播方向移动;

3、波在传播时,各质点所作的运动形式:xxx的传播过程中,各质点只在平衡位置两侧作往复运动,并不随波的前进而前移。

4、波的作用:

(1)传播能量; (2)传播信息;

5、机械波的种类:

(1)xxx:质点的振动方向和播的传播方向垂直,这样的波叫xxx。

如:水波、xxx、人浪等等;

(A)波峰:凸起的最高点叫波峰;

(B)波谷:凹下的最低点叫波谷;

(2)xxx:质点的振动方向和波的传播方向平行的波叫xxx;

(A)疏部:质点分布最稀疏的部分叫疏部;

(B)密部:质点分布最密集的部分叫密部;

(C)声波是xxx;

6、机械波的图像:建立一直角坐标系,横轴表示各质点的位置,纵轴表示各质点偏离平衡位置的位移,联接各点(x,y)所成的曲线就是机械波的图像; 机械波的图像是正弦曲线;

7、波长:两个相邻的,在振动过程中对平衡位置位移总是相等的质点间的距离叫波长;

(1)波长用 λ 表示;

(2)两个相邻的波峰或波谷间的距离等于波长;

8、介质中各质点的振动频率(周期)等于波源的振动频率(周期),这个频率就叫波动频率(周期);在一个周期内各质点传播的距离等于一个波长;

9、波速、波在介质中的传播速度叫波速;

(1)波速等于单位时间内波峰或波谷(密部或疏部)向前移动的距离;

(2)波在介质中是匀速传波的(波速恒定不变);

10、波长、波速、频率间的关系;V=λf

11、机械波在介质中的传播速度只与介质有关;

12、xxx形图中质点向相邻的前一质点所在位置运动;

高中物理知识点总结归纳 第38篇

1.速度:匀变速直线运动中速度和时间的关系:vt=v0+at

注:一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值;

(1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均;

(2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均;

2.位移:匀变速直线运动位移和时间的关系:s=v0t+1/2at2

注意:当物体作加速运动时a取正值,当物体作减速运动时a取负值;

3.推论:2as=vt2-v02

4.作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植:s2-s1=aT2

5.初速度为零的匀加速直线运动:前1秒,前2秒,……位移和时间的关系是:位移之比等于时间的平方比;第1秒、第2秒……的位移与时间的关系是:位移之比等于奇数比;

高中物理知识点总结归纳 第39篇

运动的描述

1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。

2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等a T平方。

3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。

1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。

2.分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。

3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹,平行四边形定法;合力大小随q变,只在最大最小间,多力合力合另边。

多力问题状态揭,正交分解来解决,三角函数能化解。

4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体xxx也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。

xxx运动定律

等ma,xxx二定律,产生加速度,原因就是力。

合力与a同方向,速度变量定a向,a变小则u可大,只要a与u同向。

、T等力是视重,mg乘积是实重;超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零。

曲线运动、万有引力

1.运动轨迹为曲线,xxx力存在是条件,曲线运动速度变,方向就是该点切线。

2.圆周运动xxx力,供需关系在心里,径向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心离。

3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。

机械能与能量

1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。

2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。

3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。

电场〖选修3--1〗

1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。

2.电荷周围有电场,F比q定义场强。KQ比r2点电荷,U比d是匀强电场。

电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。

3.场能性质是电势,场线方向电势降。场力做功是qU,动能定理不能忘。

4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。

恒定电流〖选修3-1〗

1.电荷定向移动时,电流等于q比t。自由电荷是内因,两端电压是条件。

正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。

2.电阻定律三因素,温度不变才得出,控制变量来论述,r l比s等电阻。

电流做功U I t ,电热I平方R t 。电功率,W比t,电压乘电流也是。

3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。

4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。

路端电压内压降,和就等电动势,除于总阻电流是。

磁场〖选修3-1〗

1.磁体周围有磁场,N极受力定方向;电流周围有磁场,安培定则定方向。

比I l是场强,φ等B S磁通量,磁通密度φ比S,磁场强度之名异。

安培力,相互垂直要注意。

4.洛仑兹力安培力,力往左甩别忘记。

电磁感应〖选修3-2〗

1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。感应电动势大小,磁通变化率知晓。

2.楞次定律定方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。

3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。楞次先看原磁场,感生磁场将xxx,全看磁通增或减,安培定则知i向。

交流电〖选修3-2〗

1.匀强磁场有线圈,旋转产生交流电。电流电压电动势,变化规律是弦线。

中性面计时是正弦,平行面计时是余弦。

ω是最大值,有效值用热量来计算。

3.变压器供交流用,恒定电流不能用。

理想变压器,初级U I值,次级U I值,相等是原理。

电压之比值,正比匝数比;电流之比值,反比匝数比。

运用变压比,若求某匝数,化为匝伏比,方便地算出。

远距输电用,升压降流送,否则耗损大,用户后降压。

气态方程〖选修3-3〗

研究气体定质量,确定状态找参量。绝对温度用大T,体积就是容积量。

压强分析封闭物,xxx定律帮你忙。状态参量要找准,PV比T是恒量。

热力学定律

1.第一定律热力学,能量守恒好感觉。内能变化等多少,热量做功不能少。

正负符号要准确,收入支出来理解。对内做功和吸热,内能增加皆正值;对外做功和放热,内能减少皆负值。

2.热力学第二定律,热传递是不可逆,功转热和热转功,具有方向性不逆。

机械振动〖选修3--4〗

1.简谐振动要牢记,O为起点算位移,回复力的方向指,始终向平衡位置,大小正比于位移,平衡位置u大极。

点对称别忘记,振动强弱是振幅,振动快慢是周期,一周期走4A路,单摆xxx比g,再开方根乘2p,秒摆周期为2秒,摆长约等长1米。

到质心摆长行,单摆具有等时性。

3.振动图像描方向,从底往顶是向上,从顶往底是下向;振动图像描位移,顶点底点大位移,正负符号方向指。

高中物理知识点总结归纳 第40篇

(1)定义:电场中两点间的电势之差。也叫电压。

(2)定义式:UAB=φA-φB

(3)特点:

1、电势差是标量,但是却有正负,正负只表示起点和终点的电势谁高谁低。若UAB>0,则UBA<0。

2、单位:伏

3、电场中两点的电势差是确定的,与零势面的选择无关

4、U=Ed匀强电场中两点间的电势差计算公式。——电势差与电场强度之间的关系。

高中物理知识点总结归纳 第41篇

1.原子核,中央站,电子分层围它转;向外跃迁为激发,辐射光子向内迁;光子能量hn,能级差值来计算。

2.原子核,能改变,αβ两衰变。α粒是氦核,电子流是β射线。

γ光子不单有,伴随衰变而出现。铀核分开是裂变,中子撞击是条件。

裂变可造_,还可用它来发电。轻核聚合是聚变,温度极高是条件。

变可以造氢弹,还是太阳能量源;和平利用前景好,可惜至今未实现。