高代公式总结 第1篇

1.齐次方程组 A_{n\times s}=0 的基础解系的个数是解空间的维数,为 n-r(A)

2.齐次方程组 A_{n\times s}x=0 有非零解 \Leftrightarrow r(A) 线性相关

齐次方程组 A_{n\times s}x=0 只有零解 \Leftrightarrow r(A)=s\Leftrightarrow a_1,a_2...a_s线性无关

高代公式总结 第2篇

1. \left|\boldsymbol{A}^{\mathrm{T}}\right|=|\boldsymbol{A}|

2.若 AB=E 则 AB=BA 且 A 和 B 均满秩

3. |k A|=k^{n}|A|

4. |\boldsymbol{A} \boldsymbol{B}|=|\boldsymbol{A}||\boldsymbol{B}|\ \ \ \left|\boldsymbol{A}^{2}\right|=|\boldsymbol{A}|^{2}

5. \left|A^{*}\right|=|A|^{n-1}

6. \left|A^{-1}\right|=|A|^{-1}

7. |A|=\prod_{i=1}^{n} \lambda_{i} \ \ \ \ \ \ \ \lambda_{i}(i=1,2, \cdots, n) 是特征值

8. \boldsymbol{A} \sim \boldsymbol{B} 则 |\boldsymbol{A}|=|\boldsymbol{B}| , tr(A)=tr(B)

高代公式总结 第3篇

不难看出这里的规律:对于对角上的可逆矩阵,有顺时针的规律,而反对角上存在可逆矩阵时按照逆时针走且有一个内部的负号。并且这里用到了拉普拉斯定理

             我们称其为降阶公式

还有一种更加常用的降阶公式

此公式有化繁为简的作用。

而所有的我们规定的非方阵都是生于初等变换而超于初等变换的。

现在我们写出矩阵初等变换的一般式

不要问K和L是哪里来的,问就是神来之笔。。。。。。

至此,关于分块初等矩阵就结束了。让我们来总结一下:我们先是讨论了最最最特殊的四个方阵,这样和数字几乎无区别,然后是矩阵方程,然后讨论对角方阵,得到了降阶公式,最后是毫无规律的普通分块矩阵。由特殊到一般。

初等矩阵的规律与应用后续仍会拓展,知识的体系也会逐渐明了。功有所不全,力有所不任,才有所不足,还望xxx指正。

                                                                                        部分引用《高等代数》xxx,xxx

高代公式总结 第4篇

                                    定义由xxx阵历经一次初等变换得到的矩阵叫做初等矩阵。

乍一听,哦,还算好理解,但你品,细细品,为什么别的不说就说xxx阵,xxx阵神奇之处就在于它与任意矩阵相乘可互换还可以直接把xxx阵消去。我们定义初等矩阵必然是为了其应用,既然xxx阵的妙处在于矩阵乘法,那么不妨大胆猜测,初等矩阵就是为了用在矩阵乘法里,为了让与单位阵相乘的矩阵做初等变换。。。。。

                       事实上,确实是这样的,初等矩阵可以×上一个矩阵使其做相等的初等变换。所以我对初等矩阵的第一定义是:开关,释放技能的开关

再来说说初等矩阵的性质。

性质一可乘(证明如上)

性质二:可逆

都是三角矩阵,对角乘积不为零行列式不为零,所以可逆。

性质三 矩阵相抵

值得注意的是,@相抵矩阵必定是同型矩阵@可逆矩阵必相抵于单位阵E,绝对木有零。

                  性质三补充@相抵的性质  !自反

高代公式总结 第5篇

1. A B=A\left[\beta_{1}, \beta_{2}, \cdots, \beta_{s}\right]=\left[A \beta_{1}, A \beta_{2}, \cdots, A \beta_s\right]

2. \left[\begin{array}{cccc}{a_{11}} & {a_{12}} & {\cdots} & {a_{1 n}} \\ {a_{21}} & {a_{22}} & {\cdots} & {a_{2 n}} \\ {\vdots} & {\vdots} & {} & {\vdots} \\ {a_{m 1}} & {a_{m 2}} & {\cdots} & {a_{m n}}\end{array}\right]\left[\begin{array}{c}{\boldsymbol{\beta}_{1}} \\ {\boldsymbol{\beta}_{2}} \\ {\vdots} \\ {\boldsymbol{\beta}_{n}}\end{array}\right]=\left[\begin{array}{c}{\boldsymbol{\alpha}_{1}} \\ {\boldsymbol{\alpha}_{2}} \\ {\vdots} \\ {\boldsymbol{\alpha}_{n}}\end{array}\right] 可以得到:

\left\{\begin{array}{c}{a_{11} \boldsymbol{\beta}_{1}+a_{12} \boldsymbol{\beta}_{2}+\cdots+a_{1 n} \boldsymbol{\beta}_{n}=\boldsymbol{\alpha}_{1}} \\ {a_{21} \boldsymbol{\beta}_{1}+a_{22} \boldsymbol{\beta}_{2}+\cdots+a_{2 n} \boldsymbol{\beta}_{n}=\boldsymbol{\alpha}_{2}} \\ {\vdots} \\ {a_{m 1} \boldsymbol{\beta}_{1}+a_{m 2} \boldsymbol{\beta}_{2}+\cdots+a_{m n} \boldsymbol{\beta}_{n}=\boldsymbol{\alpha}_{m}}\end{array}\right.

3. \left[\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right]\left[\begin{array}{cccc}{b_{11}} & {b_{12}} & {\cdots} & {b_{1 s}} \\ {b_{21}} & {b_{22}} & {\cdots} & {b_{2 s}} \\ {\vdots} & {\vdots} & {} & {\vdots} \\ {b_{n 1}} & {b_{n 2}} & {\cdots} & {b_{n s}}\end{array}\right]=\left[\begin{array}{c}{\boldsymbol{\delta}_{1}, \boldsymbol{\delta}_{2}, \cdots, \boldsymbol{\delta}_{s}} \end{array}\right]

\left\{\begin{array}{c}{b_{11} \gamma_{1}+b_{21} \gamma_{2}+\cdots+b_{n 1} \gamma_{n}=\delta_{1}} \\ {b_{12} \gamma_{1}+b_{22} \gamma_{2}+\cdots+b_{n 2} \gamma_{n}=\delta_{2}} \\ {\vdots} \\ {b_{1 s} \gamma_{1}+b_{2 s} \gamma_{2}+\cdots+b_{ns} \gamma_{s}=\delta_{s}}\end{array}\right.

4.内积 (\boldsymbol{\alpha}, \boldsymbol{\beta})=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}=\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\beta}=\boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\alpha}

高代公式总结 第6篇

1.秩为1的矩阵的特征值为 \sum{a_{ii}} ,0,0

2.若 \alpha、\beta 都是 n 维列向量,则 \alpha\beta^T 与 \beta\alpha^T 都是秩为1的矩阵,且 \alpha^T\beta=\beta^T\alpha=tr(\alpha\beta^T)=tr(\beta\alpha^T) ,故其特征值为 \alpha\beta^T 或 \beta\alpha^T

3. \sum_{i=1}^{n} \lambda_{i}=\sum_{i=1}^{n} a_{i i}=tr(A)

4. \prod_{i=1}^{n} \lambda_{i}=|\boldsymbol{A}|

5.对角阵 \Lambda=\left[\begin{array}{lll}{a} & {0} & {0} \\ {0} & {b} & {0} \\ {0} & {0} & {c}\end{array}\right] 、上下三角阵的特征值即是主对角元素

6.若 A\alpha=\lambda\alpha 则有 A^{*} \alpha=\frac{|A|}{\lambda} \alpha ,所以 A^* 特征值是 \frac{|A|}{\lambda}

7. \begin{array}{|c|c|c|c|c|}\hline 矩阵 & A & {k A} & {A^{k}} & {f(A)} & {A^{-1}} & {A}&A^{-1}+f(A) \\ \hline 特征值&\lambda & {k \lambda} & {\lambda^{*}} & {f(\lambda)} & {\lambda^{-1}} & {\frac{|A|}{\lambda}} &\frac1\lambda+f(\lambda)\\ \hline 对应特征向量&a & {a} & {a} & {a} & {a} & {a}& {a}\\ \hline\end{array}

注意其中 f 是多项式.

8.实对称矩阵的不同特征值对应的特征向量两两正交

9.两个实对称矩阵若有相同特征值,则其必相似

10.若 \alpha1 和 \alpha2 都是 A 属于特征值 \lambda_0 的特征向量,则 k_1\alpha_1+k_2\alpha_2 也是 A 属于特征值 \lambda_0 的特征向量。

11.由惯性定理可知,对于一个二次型其特征值正值的个数等于其正惯性指数,其特征值负值的个数等于其负惯性指数,而知道其正负惯性指数则可以直接写出其规范型

高代公式总结 第7篇

1. {A A^{*}=A^{*} A=|A| E}

2. {\left(A^{*}\right)^{-1}=\left(A^{-1}\right)^{*}=\frac{1}{|A|} A(|A| \neq 0)}

3. {\left(A^{*}\right)^{T}=\left(A^{T}\right)^{*}}

4. {(k A)^{*}=k^{n-1} A^{*}}

5. \left(A^{*}\right)^{*}=|A|^{n-2} A \quad(n \geqslant 2)

6. (k A)^{\mathrm{T}}=k A^{\mathrm{T}}

7. (A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}

8. (k A)^{-1}=\frac{1}{k} A^{-1}

9. (\boldsymbol{A B})^{-1}=\boldsymbol{B}^{-1} \mathbf{A}^{-1}

10.如果 \boldsymbol{A}^{\mathrm{T}} 可逆,\left(\boldsymbol{A}^{\mathrm{T}}\right)^{-1}=\left(\boldsymbol{A}^{-1}\right)^{\mathrm{T}}

11. 若 |A|\ne0 则A^{-1}=\frac{1}{|A|} A^{*}

12.如果 r(A)=1 , 则有l=\sum{a_{ii}},A^m=l^{m-1}A

13.初等矩阵变换公式 E_{i}^{-1}(k)=E_{i}\left(\frac{1}{k}\right), E_{i j}^{-1}=E_{i j}, E_{i j}^{-1}(k)=E_{i j}(-k)

14 矩阵 A 和矩阵 B 等价 \Leftrightarrow R(A)=R(B)

15.如果 A 可逆, r(AB)=r(B),r(BA)=r(B)

16. r\left(\boldsymbol{A}^{*}\right)=\left\{\begin{array}{ll}{n,} & {r(\boldsymbol{A})=n} \\ {1,} & {r(\boldsymbol{A})=n-1} \\ {0,} & {r(\boldsymbol{A})

17.分块矩阵求逆 \left[\begin{array}{ll}{\boldsymbol{B}} & {\boldsymbol{O}} \\ {\boldsymbol{O}} & {\boldsymbol{C}}\end{array}\right]^{-1}=\left[\begin{array}{ll}{\boldsymbol{B}^{-1}} & {\boldsymbol{O}} \\ {\boldsymbol{O}} & {\boldsymbol{C}^{-1}}\end{array}\right] ;\left[\begin{array}{ll}{\boldsymbol{O}} & {\boldsymbol{B}} \\ {\boldsymbol{C}} & {\boldsymbol{O}}\end{array}\right]^{-1}=\left[\begin{array}{cc}{\boldsymbol{O}} & {\boldsymbol{C}^{-1}} \\ {\boldsymbol{B}^{-1}} & {\boldsymbol{O}}\end{array}\right]

高代公式总结 第8篇

1.使用矩阵运算公式,使用行列式公式

已知 A 是3阶矩阵, A^T 是 A 的转置矩阵, A^* 是 A 的伴随矩阵,如果 |A|=\frac14 ,则 \left|\left(\frac{2}{3} A\right)^{-1}-8 A^{*}\right|=____________

\left|\left(\frac{2}{3} A\right)^{-1}-8 A^{*}\right|=\left|\frac{3}{2} A^{-1}-2 A^{-1}\right|=\left|-\frac{1}{2} A^{-1}\right|=\left(-\frac{1}{2}\right)^{3}\left|A^{-1}\right|=-\frac{1}{2}

2.利用初等变换矩阵进行计算

已知 A=\left[\begin{array}{}{a_{11}} & {a_{12}} & {a_{13}} \\ {a_{21}} & {a_{22}} & {a_{23}} \\ {a_{31}} & {a_{32}} & {a_{33}}\end{array}\right], B=\left[\begin{array}{}{a_{11}-2 a_{13}} & {a_{12}} & {a_{12}+a_{13}} \\ {a_{21}-2 a_{23}} & {a_{22}} & {a_{22}+a_{23}} \\ {a_{31}-2 a_{33}} & {a_{32}} & {a_{32}+a_{33}}\end{array}\right] ,若行列式 |A|=2 ,则 \left(\boldsymbol{A}^{*} \boldsymbol{B}\right)^{-1}= ______

\boldsymbol{B}=\boldsymbol{A}\left[\begin{array}{ccc}{1} & {0} & {0} \\ {0} & {1} & {0} \\ {-2} & {0} & {1}\end{array}\right]\left[\begin{array}{ccc}{1} & {0} & {0} \\ {0} & {1} & {1} \\ {0} & {0} & {1}\end{array}\right]

\begin{array}{lll}{A^{*} B=A^{*} A} {\left[\begin{array}{lll}{1} & {0} & {0} \\ {0} & {1} & {0} \\ {-2} & {0} & {1}\end{array}\right]\left[\begin{array}{lll}{1} & {0} & {0} \\ {0} & {1} & {1} \\ {0} & {0} & {1}\end{array}\right]=2\left[\begin{array}{ccc}{1} & {0} & {0} \\ {0} & {1} & {0} \\ {-2} & {0} & {1}\end{array}\right]\left[\begin{array}{lll}{1} & {0} & {0} \\ {0} & {1} & {1} \\ {0} & {0} & {1}\end{array}\right]}\end{array}

\begin{align}\left(\boldsymbol{A}^{*} \boldsymbol{B}\right)^{-1}&=\frac{1}{2}\left[\begin{array}{ccc}{1} & {0} & {0} \\ {0} & {1} & {1} \\ {0} & {0} & {1}\end{array}\right]^{-1}\left[\begin{array}{ccc}{1} & {0} & {0} \\ {0} & {1} & {0} \\ {-2} & {0} & {1}\end{array}\right]^{-1}=\frac{1}{2}\left[\begin{array}{ccc}{1} & {0} & {0} \\ {0} & {1} & {-1} \\ {0} & {0} & {1}\end{array}\right]\left[\begin{array}{cc}{1} & {0}& {0} \\ {0} & {1} & {0}\\ {2} & {0}& {1}\end{array}\right]\\&=\frac{1}{2}\left[\begin{array}{ccc}{1} & {0} & {0} \\ {-2} & {1} & {-1} \\ {2} & {0} & {1}\end{array}\right]\end{align}

3.利用矩阵求解齐次方程组

若 AB=0 ,则 B 的每一个列向量都是 Ax=0 的解

例题:已知 A=\left[\begin{array}{ccc}{1} & {-2} & {0} \\ {2} & {1} & {5} \\ {0} & {1} & {1}\end{array}\right] , A^* 是 A 的伴随矩阵,则 A^*x=0 的通解是

经计算, \left| A \right|=0 , r(A)=2 那么 r(A^*)=1 ,从而 n-r\left(A^{*}\right)=2 , A^*x=0 有两个基础解系,通解形式为 k_{1} \boldsymbol{\eta}_{1}+k_{2} \boldsymbol{\eta}_{2} ,而 A^{*} A=|A| E=O

所以 A 的列向量是 A^*x=0 的解

4.利用四则运算求特征值

例题: 已知A=\left[\begin{array}{lll}{3} & {2} & {2} \\ {2} & {3} & {2} \\ {2} & {2} & {3}\end{array}\right] 求 A 的特征值

解: A=\left[\begin{array}{ll}{1} & {}& {} \\ {} & {1} \\ {} & & {} {1}\end{array}\right]+\left[\begin{array}{lll}{2} & {2} & {2} \\ {2} & {2} & {2} \\ {2} & {2} & {2}\end{array}\right]=E+B

由 r(B)=1 知 B 的特征值是 \sum_{i=1}^{3} a_{i i}=6,0,0 故 A 的特征值是 7,1,1

5.行列式加法转化为乘法

例题:

已知 A 是3阶矩阵,特征值为1,2,-2,则 |A+A^{-1}|=

解: A+A^{-1}=A^{-1}\left(A^{2}+E\right)

由于 A 的特征值为1,2,-2故 A^2+E 的特征值为2,5,5

又 |\boldsymbol{A}|=1 \cdot 2 \cdot(-2)=-4

故 \left|\boldsymbol{A}+\boldsymbol{A}^{-1}\right|=-\frac{25}{2}

6.向量得到矩阵公式

例题:设 A 是三阶矩阵, \alpha1、\alpha2、\alpha3 是三维线性无关的列向量,且 A\alpha1=\alpha2+\alpha3,A\alpha2=\alpha1+\alpha3,A\alpha3=\alpha1+\alpha2 则和 A 相似的矩阵是_____

根据已知条件有 A\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left(\alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{3}, \alpha_{1}+\alpha_{2}\right)=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)\left[\begin{array}{ccc}{0} & {1} & {1} \\ {1} & {0} & {1} \\ {1} & {1} & {0}\end{array}\right] 记 P=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right), B=\left[\begin{array}{lll}{0} & {1} & {1} \\ {1} & {0} & {1} \\ {1} & {1} & {0}\end{array}\right]

故 A P=P B \Rightarrow P^{-1} A P=B

故 A 的相似矩阵是 \left[\begin{array}{lll}{0} & {1} & {1} \\ {1} & {0} & {1} \\ {1} & {1} & {0}\end{array}\right]

7.求特征值,求秩转化为求行列式

已知二次型 x^{\mathrm{T}} A x=a x_{1}^{2}+2 x_{2}^{2}+a x_{3}^{2}+6 x_{1} x_{2}+2 x_{2} x_{3} 的秩为2,则a=____

解: A=\left[\begin{array}{lll}{a} & {3} & {0} \\ {3} & {2} & {1} \\ {0} & {1} & {a}\end{array}\right] ,由于秩为2,则 |A|=0 解得a=0或5

二次型 \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}=a x_{1}^{2}+a x_{2}^{2}+2 x_{3}^{2}-2 x_{1} x_{2}+2 x_{1} x_{3}-2 x_{2} x_{3} 经过正交变换化为标准型 3 y_{1}^{2}-y_{3}^{2} 则a=_____

由正交变换得到的标准型可知A的特征值为3,-1,0

则 |A|=0 解得a=0或1

由于 \boldsymbol{A}=\left[\begin{array}{ccc}{a} & {-1} & {1} \\ {-1} & {a} & {-1} \\ {1} & {-1} & {2}\end{array}\right]

由 \sum_{i=1}^{n} \lambda_{i}=\sum_{i=1}^{n} a_{i i}=3 得 2a+2=2 故a=0

8.由特征值正负直接写出规范型

f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{3}^{2}+4 x_{4}^{2}+2 x_{1} x_{2}+4 x_{3} x_{4} 的规范型

先求得其特征值为1,5,-1,0故正惯性指数p=2,负惯性指数q=1,

因此二次型规范型为 y_1^2+y_2^2-y_3^2

高代公式总结 第9篇

(1) \left|\boldsymbol{A}^{\mathrm{T}}\right|=\left|\boldsymbol{A}\right|

\left|\begin{array}{lll}{a_{1}} & {a_{2}} & {a_{3}} \\ {b_{1}} & {b_{2}} & {b_{3}} \\ {c_{1}} & {c_{2}} & {c_{3}}\end{array}\right|=\left|\begin{array}{lll}{a_{1}} & {b_{1}} & {c_{1}} \\ {a_{2}} & {b_{2}} & {c_{2}} \\ {a_{3}} & {b_{3}} & {c_{3}}\end{array}\right|

(2)上/下三角行列式

\left|\begin{array}{cccc}{a_{11}} & {a_{12}} & {\cdots} & {a_{1 n}} \\ {} & {a_{22}} & {\cdots} & {a_{2 n}} \\ {} & {} & {\ddots} & {\vdots} \\ {} & {} & {} & {a_{nn}}\end{array}\right|=\left|\begin{array}{cccc}{a_{11}} & {} & {} & {} \\ {a_{21}} & {a_{22}} & {} & {} \\ {\vdots} & {\vdots} & {\ddots} & {} \\ {a_{n 1}} & {a_{n 2}} & {\cdots} & {a_{nn}}\end{array}\right|=a_{11} a_{22} \cdots a_{nn}

\left|\begin{array}{ccccc}{a_{11}} & {a_{12}} & {\cdots} & {a_{1 . n-1}} & {a_{1 n}} \\ {a_{21}} & {a_{22}} & {\cdots} & {a_{2,n-1}} & {0} \\ {\vdots} & {\vdots} & {} & {\vdots} & {\vdots} \\ {a_{n 1}} & {0} & {\cdots} & {0} & {0}\end{array}\right|=\left|\begin{array}{cccc}{0} & {\cdots} & {0} & {a_{1 n}} \\ {0} & {\cdots} & {a_{2,n-1}} & {a_{2 n}} \\ {\vdots} & {} & {\vdots} & {\vdots} \\ {a_{n 1}} & {\cdots} & {a_{n, n-1}} & {a_{nn}}\end{array}\right|=(-1)^{\frac{n(n-1)}{2}} a_{1 n} a_{2, n-1} \cdots a_{n 1}

(3)范德蒙行列式

\left|\begin{array}{}{1} & {1} & {\dots} & {1} \\ {x_{1}} & {x_{2}} & {\dots} & {x_{n}} \\ {\vdots} & {\vdots} & {} & {\vdots} \\ {x_{1}^{n-1}} & {x_{2}^{n-1}} & {\dots} & {x_{n}^{n-1}}\end{array}\right|

\begin{array}{c}{\prod_{1 \leq j

D=\left|\begin{array}{}{1} & {1} & {1} & {1} \\ {2} & {2^{2}} & {2^{3}} & {2^{4}} \\ {3} & {3^{2}} & {3^{3}} & {3^{4}} \\ {4} & {4^{2}} & {4^{3}} & {4^{4}}\end{array}\right|=2 \cdot 3 \cdot 4\left|\begin{array}{}{1} & {1} & {1} & {1} \\ {1} & {2} & {2^{2}} & {2^{3}} \\ {1} & {3} & {3^{2}} & {3^{3}} \\ {1} & {4} & {4^{2}} & {4^{3}}\end{array}\right|=4 !\left|\begin{array}{}{1} & {1} & {1} & {1} \\ {1} & {2} & {3} & {4} \\ {1} & {2^{2}} & {3^{2}} & {4^{2}} \\ {1} & {2^{3}} & {3^{3}} & {4^{3}}\end{array}\right| \\=4 !(4-3)(4-2)(4-1)(3-2)(3-1)(2-1)=4 ! 3 ! 2 !=\prod_{i=1}^{4}k!

这道题需要注意的是,由于公式(1),导致范德蒙德除了定义中的情况,在某些情况下还可以用于其转置矩阵。

(4)拉普拉斯展开式特殊形式

\left|\begin{array}{ll}{\boldsymbol{A}} & {\boldsymbol{O}} \\ {\boldsymbol{O}} & {\boldsymbol{B}}\end{array}\right|=\left|\begin{array}{ll}{\boldsymbol{A}} & {\boldsymbol{O}} \\ {\boldsymbol{C}} & {\boldsymbol{B}}\end{array}\right|=\left|\begin{array}{ll}{\boldsymbol{A}} & {\boldsymbol{C}} \\ {\boldsymbol{O}} & {\boldsymbol{B}}\end{array}\right|=|\boldsymbol{A}||\boldsymbol{B}|

\left|\begin{array}{cc}{\boldsymbol{O}} & {\boldsymbol{A}} \\ {\boldsymbol{B}} & {\boldsymbol{O}}\end{array}\right|=\left|\begin{array}{cc}{\boldsymbol{O}} & {\boldsymbol{A}} \\ {\boldsymbol{B}} & {\boldsymbol{C}}\end{array}\right|=\left|\begin{array}{cc}{\boldsymbol{C}} & {\boldsymbol{A}} \\ {\boldsymbol{B}} & {\boldsymbol{O}}\end{array}\right|=(-1)^{mn}|\boldsymbol{A}||\boldsymbol{B}|

注意这些都是方阵

例题: D=\left|\begin{array}{llll}{1} & {0} & {0} & {4} \\ {0} & {2} & {3} & {0} \\ {0} & {3} & {2} & {0} \\ {4} & {0} & {0} & {1}\end{array}\right|=-\left|\begin{array}{cccc}{1} & {0} & {0} & {4} \\ {4} & {0} & {0} & {1} \\ {0} & {3} & {2} & {0} \\ {0} & {2} & {3} & {0}\end{array}\right|=\left|\begin{array}{cccc}{1} & {4} & {0} & {0} \\ {4} & {1} & {0} & {0} \\ {0} & {0} & {2} & {3} \\ {0} & {0} & {3} & {2}\end{array}\right|=\left|\begin{array}{cc}{1} & {4} \\ {4} & {1}\end{array}\right| \cdot\left|\begin{array}{cc}{2} & {3} \\ {3} & {2}\end{array}\right|=75

\begin{align}D&=\left|\begin{array}{cccc}{a_{1}} & {0} & {a_{2}} & {0} \\ {0} & {b_{1}} & {0} & {b_{2}} \\ {c_{1}} & {0} & {c_{2}} & {0} \\ {0} & {d_{1}} & {0} & {d_{2}}\end{array}\right|=-\left|\begin{array}{cccc}{a_{1}} & {0} & {a_{2}} & {0} \\ {c_{1}} & {0} & {c_{2}} & {0} \\ {0} & {b_{1}} & {0} & {b_{2}} \\ {0} & {d_{1}} & {0} & {d_{2}}\end{array}\right|=\left|\begin{array}{llll}{a_{1}} & {a_{2}} & {0} & {0} \\ {c_{1}} & {c_{2}} & {0} & {0} \\ {0} & {0} & {b_{1}} & {b_{2}} \\ {0} & {0} & {d_{1}} & {d_{2}}\end{array}\right| \\&\begin{array}{l}{=\left|\begin{array}{ll}{a_{1}} & {a_{2}} \\ {c_{1}} & {c_{2}}\end{array}\right| \cdot\left|\begin{array}{ll}{b_{1}} & {b_{2}} \\ {d_{1}} & {d_{2}}\end{array}\right|} = {\left(a_{1} c_{2}-a_{2} c_{1}\right)\left(b_{1} d_{2}-b_{2} d_{1}\right)}\end{array}\end{align}

(4)若 \boldsymbol{A}=\left[\begin{array}{llll}{0} & {a} & {b} & {c} \\ {0} & {0} & {d} & {e} \\ {0} & {0} & {0} & {f} \\ {0} & {0} & {0} & {0}\end{array}\right] ,则 A^{3}=\left[\begin{array}{cccc}{0} & {0} & {0} & {a d f} \\ {0} & {0} & {0} & {0} \\ {0} & {0} & {0} & {0} \\ {0} & {0} & {0} & {0}\end{array}\right], \mathbf{A}^{4}=\mathbf{O}